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Formation of the three primary germ layers during gastrulation is an essential step in 
the establishment of the vertebrate body plan and is associated with major 
transcriptional changes 1–5. Global epigenetic reprogramming accompanies these 
changes6–8, but the role of the epigenome in regulating early cell-fate choice remains 
unresolved, and the coordination between di�erent molecular layers is unclear. Here 
we describe a single-cell multi-omics map of chromatin accessibility, DNA 
methylation and RNA expression during the onset of gastrulation in mouse embryos. 
The initial exit from pluripotency coincides with the establishment of a global 
repressive epigenetic landscape, followed by the emergence of lineage-speci�c 
epigenetic patterns during gastrulation. Notably, cells committed to mesoderm and 
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5,000 genes tested, we identified 125 genes the expression of which 
shows significant correlation with promoter DNA methylation and 52 
with expression significantly correlated with chromatin accessibility 
(Fig.�1g, Extended Data Fig.�4, Supplementary Tables�1, 2). These loci 
largely comprise markers of early pluripotency and germ cells, such 
as Dppa4, Zfp42, Tex19.1 and Pou3f1 (Fig.�1g, h, Extended Data Fig.�4), 
which are repressed, coinciding with the global increase in methyla -
tion and decrease in accessibility. In addition, this analysis identified 
genes, including Trap1a and Zfp981, that may have unknown roles in 
development. Notably, of the genes that are upregulated after E4.5, 
only 39 and 9 show a significant correlation between RNA expression 
and promoter methylation or accessibility, respectively (Extended Data 
Fig.�4). This suggests that the upregulation of these genes is probably 
controlled by other regulatory elements.

Characterizing germ-layer epigenomes
To understand the relationships between all three molecular layers 
during germ-layer commitment we next applied multi-omics factor 
analysis (MOFA)15 to cells collected at E7.5. MOFA performs unsuper -
vised dimensionality reduction simultaneously across multiple data 
modalities, thereby capturing the global sources of cell-to-cell variabil -
ity via a small number of inferred factors. Notably, the model makes use 
of multimodal measurements from the same cells, thereby detecting 
coordinated changes between the different data modalities.

As input to the model we used RNA-sequencing (RNA-seq) data across 
protein-coding genes and DNA methylation and chromatin accessibility 

data across putative regulatory elements. This includes promoters 
and germ-layer-specific chromatin immunoprecipitation with DNA 
sequencing (ChIP–seq) peaks for distal H3K27ac (enhancers) and 
H3K4me3 (transcription start sites) 16 (Extended Data Fig.�5). MOFA iden-
tified six factors, with the top two (sorted by variance explained) captur -
ing the emergence of the three germ layers (Fig.� 2a, b). Notably, MOFA 
links the variation at the gene-expression level to concerted methylation 
and accessibility changes at lineage-specific enhancer marks�(Fig. 2c ).  
By contrast, epigenetic changes at promoters or at H3K4me3-
marked regions show much weaker associations with germ-layer 
formation (Fig.� 2a, Extended Data Fig.�6, Supplementary Tables�3, 4).  
This supports other studies that have identified distal enhancers as 
lineage-driving regulatory regions 8,17–19. Inspection of gene–enhancer 
associations identified enhancers linked to key germ-layer markers 
including Lefty2 and Mesp2 (mesoderm), Foxa2 and Bmp2 (endoderm), 
and Bcl11a and Sp8 (ectoderm) (Fig.� 2c, Extended Data Fig.�7). Notably, 
ectoderm-specific enhancers display fewer associations than their 
mesoderm and endoderm counterparts, a finding that is explored 
further below.

The four remaining factors correspond to additional transcriptional 
and epigenetic signatures related to anterior–posterior axial pattern -
ing (factor 3), notochord formation (factor 4), mesoderm patterning 
(factor 5) and cell cycle (factor 6) (Extended Data Fig.�8).

Finally, we sought to identify transcription factors that could drive or 
respond to epigenetic changes in germ-layer commitment. Integrating 
differential-expression information with motif enrichment at differ -
entially accessible loci revealed that lineage-specific enhancers were 
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endoderm enhancers. In both cases, changes in methylation and acces -
sibility co-occur, suggesting tight co-regulation of the two epigenetic 
layers.
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Methods

No statistical methods were used to predetermine sample size. The 



Samples were similar overall regarding total mapped read numbers, 
distribution of reads and ChIP enrichment.

To best represent the underlying ChIP–seq signal, different meth -
ods to define enriched genomic regions were used for H3K4me3 and 
H3K27ac marks. For H3K4me3, a SeqMonk implementation of MACS 42 
with the local rescoring step omitted was used (P�<�10 �15, fragment size 
300 bp), and enriched regions closer than 100 bp were merged. Peaks 
were called separately for each lineage. For H3K27ac, reads were quan-
titated per 500-bp tiles correcting per million total reads and excluding 
duplicate reads. Smoothing subtraction quantification was used to 
identify local maxima (value >1), and peaks closer than 500 bp apart 
were merged. Lineage-specific peak annotations exclude peaks that 
are also present in one of the other lineages, and only peaks present in 
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pair of factors across the ten trials. All inferred factors were consistently 
found in all model instances.

The downstream characterization of the model output included 
several analyses. (1) Variance decomposition: quantification of the 
fraction of variance explained (R 2) by each factor in each view, using a 
coefficient of determination 15. (2) Visualization of weights/loadings: 
the model learns a weight for every feature in each factor, which can 
be interpreted as a measure of feature importance. Features with large 
weights (in absolute value) are highly correlated with the factor val -
ues. (3) Visualization of factors: each MOFA factor captures a different 
dimension of cellular heterogeneity. All together, they define a latent 
space that maximizes the variance explained in the data (under some 
important sparsity assumptions 15). The cells can be visualized in the 
latent space by plotting scatter plots of combinations of factors. (4) 
Gene set enrichment analysis: when inspecting the weights for a given 
factor, multiple features can be combined into a gene set-based annota -
tion. For a given gene set G, we evaluate its significance via a parametric 
t-test (two-sided), whereby we compare the mean of the weights of 
the foreground set (features that belong to the set G ) with the mean 
of the weights in the background set (features that do not belong to 
the set G). Resulting P values are adjusted for multiple testing using 
the Benjamini–Hochberg procedure from which significant pathways 
are called (FDR <10%).

Reporting summary
Further information on research design is available in the�Nature 
Research Reporting Summary linked to this paper.

Data availability
Raw sequencing data together with processed files (RNA counts, CpG 
methylation reports, GpC accessibility reports) are available in the 
Gene Expression Omnibus under accession number GSE121708. Pro-
cessed data can be downloaded from ftp://ftp.ebi.ac.uk/pub/databases/
scnmt_gastrulation.

Code availability
All code used for analysis is available at https://github.com/rargelaguet/
scnmt_gastrulation.
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Extended Data Fig. 1 | scNMT-seq quality controls. a, b, Number of observed 
cytosines in CpG (red; a) or GpC (blue; b) contexts respectivel
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 3 | See next page for caption.



Extended Data Fig. 3 | Global methylation and chromatin accessibility 
dynamics.  a, b, Distribution of DNA methylation ( a) and chromatin 
accessibility levels ( b) per stage and genomic context. When aggregating over 
genomic features, CpG methylation and GpC accessibility levels (%) are 
computed assuming a binomial model, with the number of trials being the total 
number of observed CpG (or GpC) sites and the number of successes being the 
number of methylated CpG (or GpC) sites (Methods). Notably, this implies that 
DNA methylation and chromatin accessibility are quantified as a percentage 
and are not binarized into low or high states. As this figure shows, the 
distribution of DNA methylation and chromatin accessibility across loci (after 
aggregating measurements across all cells per stage) is largely continuous and 
does not show bimodality. Hence, a binary approach similar to that sometimes 
used for differentiated cell types would not provide a good representation of 
the data. c, d, Box plots showing the distribution of genome-wide CpG 
methylation levels ( c) or GpC accessibility levels (d) per stage and lineage. Each 
dot represents a single cell. Box plots show median levels and the first and third 

quartile, whiskers show 1.5× the interquartile range.�At a significance threshold 
of 0.01 (t-test, two-sided), the global DNA methylation levels differ between 
embryonic and extra-embryonic lineages, but the global chromatin 
accessibility levels do not. e , f, Dimensionality reduction of DNA methylation 
(e) and chromatin accessibility ( f ) data. To perform dimensionality reduction 
while handling the large amount of missing values, we used a Bayesian factor 
analysis model (Methods). Scatter plots of the first two latent factors (sorted by 
variance explained) for models trained with cells from the indicated stages�are 
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Extended Data Fig. 5 | See next page for caption.



Article
Extended Data Fig. 5 | Characterization of lineage-specific H3K27ac and 
H3K4me3 ChIP–seq data.  a, Percentage of peaks overlapping promoters 
(±500 bp of TSS of annotated mRNAs (Ensembl v.87); lighter colour) and not 
overlapping promoters (distal peaks, darker colour). H3K27ac peaks tend to be 
distal from the promoters, marking putative enhancer elements 53. H3K4me3 
peaks tend to overlap promoter regions, marking TSS 54.�b, Venn diagrams 
showing overlap of peaks for each lineage, for distal H3K27ac (left) and 
H3K4me3 (right). This shows that H3K27ac peaks tend to be lineage-specific, 
whereas H3K4me3 peaks tend to be shared between lineages. c, Illustrative 
example of the ChIP–seq profile for the ectoderm marker Cxcl12 . The top tracks 
show wiggle plots of ChIP–seq read density (normalized by total read count) 

for lineage-specific H3K27ac and H3K4me3. The coding sequence is shown in 
black. The bottom tracks show the lineage-specific peak calls (Methods). 
H3K27ac peaks are split into distal (putative enhancers) and proximal to the 
promoter. d, Left, bar plot of the fraction of E7.5 lineage-specific enhancers 
(n�=�691 for ectoderm, 618 for endoderm and 340 for mesoderm) that are 
uniquely marked by H3K27ac in either E10.5 midbrain, E12.5 gut or E10.5 heart. 
Right, heat map displaying H3K27ac levels at individual lineage-specific 
enhancers (n�=�2,039 for ectoderm, 1,124 for endoderm and 631 for mesoderm) 
in more differentiated tissues. E7.5 enhancers are predominantly marked in 
their differentiated-tissue counterparts (midbrain for ectoderm, gut for 
endoderm and heart for mesoderm).



Extended Data Fig. 6 | Differential DNA methylation and chromatin 
accessibility analysis at E7.5 for different genomic contexts. a, Bar plots 
showing the fraction (left) or the total number (right) of differentially 
methylated (red) or accessible (blue) loci (FDR <10%, y axis) per genomic 
context ( x axis). Each subplot corresponds to the comparison of one cell type 
(group A) against cells comprising the other cell types present at E7.5 (group 
B). In the graphs on the right, positive values indicate an increase in DNA 
methylation or chromatin accessibility in group A, whereas negative values 
indicate a decrease in DNA methylation or chromatin accessibility. Differential 

analysis of DNA methylation and chromatin accessibility was performed 
independently for each genomic element using a two-sided Fisher’s exact test 
of equal proportions (Methods). b , Scatter plots showing differential DNA 
methylation ( x axis) versus chromatin accessibility ( y axis) analysis at 
promoters. Ectoderm versus non-ectoderm cells (left), endoderm versus non-
endoderm cells (middle) and mesoderm versus non-mesoderm cells (right)�are 
shown. Each dot corresponds to a gene (n�=�2,038). Labelled black dots 
highlight genes with lineage-specific RNA expression that show significant 
differential methylation or accessibility in their promoters (FDR <10%).
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Extended Data Fig. 7 | Illustrative examples of putative epigenetic 
regulation in enhancer elements during germ-layer commitment.  a–c, Box 
and violin plots showing the distribution of RNA expression (log 2



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Characterization of MOFA factors. a, Factor 1 as 
mesoderm commitment factor. Left, RNA-expression loadings for factor 1. 
Genes with large positive loadings increase expression in the positive factor 
values (mesoderm cells). Middle, scatter plot of factor 1 ( x axis) and factor 2 (y 
axis) values. Each dot corresponds to a single cell, coloured by the average 
methylation levels of the top 100 enhancers with highest loading. Right, as the 
middle panel, except cells are coloured by the average accessibility levels. b , 
Factor 2 as the endoderm commitment factor. Left, RNA-expression loadings 
for factor 2. Genes with large positive loadings increase expression in the 
positive factor values (endoderm cells). Middle, scatter plot of factor 1 ( x axis) 
and factor 2 ( y axis) values. Each dot corresponds to a single cell, coloured by 
the average methylation levels (%) of the top 100 enhancers with highest 
loading. Right, as the middle panel, but cells are coloured by the average 
accessibility levels. c, Characterization of MOFA factor 3 as anteroposterior 
axial patterning and mesoderm maturation. Left, bee swarm plot of factor 3 
values, grouped and coloured by cell type. The mesoderm cells are 

subclassified into nascent and mature mesoderm (Extended Data Fig.�2). Right, 
gene set enrichment analysis of the gene loadings of factor 3. The top most 
significant pathways from MSigDB C2 55 (Methods)�are shown. d , 
Characterization of MOFA Factor 6 as cell cycle. Left, bee swarm plot of factor 6 
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Extended Data Fig. 10 | E7.5 ectoderm enhancers contain a mixture of 
pluripotency and neural signatures with different epigenetic dynamics.  a, 
Scatter plot showing H3K27ac levels for individual ectoderm enhancers 
(n�=�2,039) quantified in serum-grown ES cells (pluripotency enhancers, x axis) 
versus E10.5 midbrain (neuroectoderm enhancers, y axis). H3K27ac levels in the 
two lineages are negatively correlated (Pearson’s R�=��0.44), indicating that 
most enhancers are either marked in ES cells or in the brain. The top 250 
enhancers that show the strongest differential H3K27ac levels between 
midbrain and ES cells (blue for midbrain-specific enhancers and grey for ES cell-
specific enhancers)�are highlighted. b , Density plots of H3K27ac levels in ES 
cells versus E10.5 midbrain. H3K27ac levels are negatively correlated at E7.5 
ectoderm enhancers, but not in E7.5 endoderm ( n�=�1,124) or mesoderm 
enhancers (n�=�631). c, Profiles of DNA methylation (red) and chromatin 
accessibility (blue) along the epiblast–ectoderm trajectory. Panels show 
different genomic contexts: E7.5 ectoderm enhancers that are specifically 
marked by H3K27ac in the midbrain (middle) or ES cells (bottom) (highlighted 

populations in a ). Running averages of 50-bp windows around the centre of the 
ChIP–seq peaks (2�kb upstream and downstream)�are shown. Solid lines display 
the mean across cells (within a given lineage) and shading displays the s.d. 
Dashed horizontal lines represent genome-wide background levels for DNA 



Extended Data Fig. 11 | See next page for caption.
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Extended Data Fig. 11 | Silencing of ectoderm enhancers precedes activation 
of mesoderm and endoderm enhancers.  a, Reconstructed mesoderm (top) 
and endoderm (bottom) commitment trajectories using a diffusion 
pseudotime method applied to the RNA-expression data (Methods). Scatter 
plots of the first two diffusion components�are shown, with cells coloured 
according to their lineage assignment ( n�=�1,154 for endoderm and n�=�1,511 for 
mesoderm). For both cases, ranks along the first diffusion component are 
selected to order cells according to their differentiation state. b , DNA 
methylation (red) and chromatin accessibility (blue) dynamics of lineage-
defining enhancers along the mesoderm (top) and endoderm (bottom) 

trajectories. Each dot denotes a single cell ( n�=�387 for endoderm and n�=�474 for 
mesoderm) and black curves represent non-parametric locally estimated 
scatterplot smoothing regression estimates. In addition, for each scenario we 
fit a piecewise linear regression model for epiblast, primitive streak and 
mesoderm or endoderm cells (vertical lines indicate the discretized lineage 
transitions). For each model fit, the slope ( r) and its significance level are 
displayed in the top (� for nonsignificant, 0.01<*P�<�0.1 and **P�<�0.01). c, Density 
plots showing differential DNA methylation ( x axis) and chromatin accessibility 
( y axis) at lineage-defining enhancers calculated for each of the lineage 
transitions.



Extended Data Fig. 12 | See next page for caption.
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Extended Data Fig. 12 | Embryoid bodies recapitulate the transcriptional, 
methylation and accessibility dynamics of the embryo. a, Embryoid bodies 
show high transcriptional similarity to gastrulation-stage embryos. Top left, 
UMAP projection of RNA expression for the embryoid body dataset ( n�=�775). 
Cells are coloured by lineage assignment and shaped by genotype (WT or Tet  
TKO). Bottom left, UMAP projection of stages E6.5 to E8.5 of the atlas dataset 
(no extra-embryonic cells) with the nearest neighbours that were used to 
assign cell type labels to the scNMT-seq embryoid body dataset coloured in red 
(WT) or blue (Tet TKO). Middle, UMAP projection of embryoid body cells 
coloured by the relative RNA expression of marker genes. Right, scatter plot of 
the differential gene expression (log 2 normalized counts) between different 
assigned lineages for embryoid bodies ( x axis) versus embryos (y axis). Each 
dot represents one gene. Pearson correlation coefficient with corresponding  
P value (two-sided) are displayed. Lines show the linear regression fit. The top-
four genes with the largest differential expression are highlighted in red.  
b, Global DNA methylation and chromatin accessibility levels during embryoid 
body differentiation. Top, box plots showing the distribution of genome-wide 

CpG methylation (left) or GpC accessibility levels (right) per time point and 
lineage (compare with Extended Data Fig.�3). Each dot represents a single cell 
(only wild-type cells are used). Box plots show median levels and the first and 
third quartile, whiskers show 1.5× the interquartile range. Bottom, heat map of 
DNA methylation (left) or chromatin accessibility (right) levels per time point 
and genomic context (compare with Fig.� 1e, f). c, Ectoderm enhancers are more 
methylated in Tet  TKO compared with wild-type epiblast cells in�vivo. Bar plots 
show the mean (bulk) DNA methylation levels for ectoderm (left), endoderm 
(middle) and mesoderm (right) enhancers in E6.5 epiblast cells 25. For each 
genotype, two replicates are shown. d , Profiles of DNA methylation (red) and 
chromatin accessibility (blue) at lineage-defining enhancers quantified over 
different lineages across embryoid body differentiation (only wild-type cells). 
Running averages in 50-bp windows around the centre of the ChIP–seq peaks 
(2�kb upstream and downstream)�are shown. Solid lines display the mean across 
cells and shading displays the corresponding s.d. Dashed horizontal lines 
represent genome-wide background levels for methylation (red) and 
accessibility (blue).
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