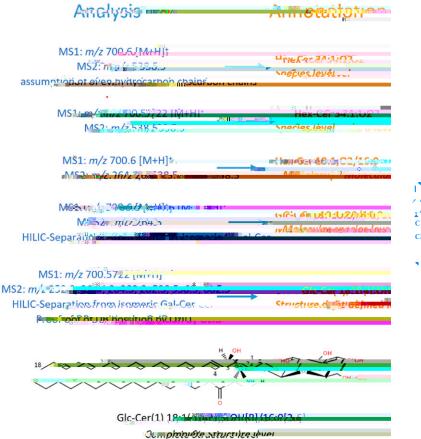
Update on LIPID MAPS classification, nomenclature, and shorthand notation for MS-derived lipid structures


Authors choice Fi a e i o e acce de sheve fishe Ceorre C = CC-BY ice e, $T = a = c = ab = a, \dots$ $D = c = A = \dots$ $F = c = \dots = c : F = ac = S = \dots = M = a = \dots$

AND IN THE NEW THE TAXABLE PROPERTY AND A DECKNOL

- Upon application of a validated MS-method, interpreta-• $a_{a,a} = c_{a} a b_{a} b_{a} c_{a} a b_{a} c_{a} a$

- a DBE.
 "Phosphate-position level" annotates positions of a (1), ..., p Ip (3') ... p Ip 2(4',5') a
- "Molecular species level" pertains to all categories ad-
- a a_{1} a_{2} a_{3} a_{4} a_{5} a_{6} a_{7} $a_$
- •" , , , , , , , , , , , , GL a G ca , , , , , ab, , a a - , , , , a ac , /a, , c , , , a , , c , , bac b a , ,

1 p S0

- "Full structure level" annotates molecular species coma.a., c., a.a., c., a., c., a., c., a., c., c., c., c., a., a., , c., r., FA 18:2(9Z,11E);13OH.
- a , , , c , c a a , a c a ca, c , , a a , .
- $A = ca \cdot a = a = a = ca \cdot ba$

the share a second second

TABLE 2A.	⊂Ç a, ,	abb,	, a		Ca	12	FA
-----------	---------	------	-----	--	----	----	----

CNa	Is • C, a, , , LI _P ID MA _P S	Abb, , a FA	
Fa as	Fa as a c a [FA01]		
Fa a, c	Fa a, c , [FA05]	FOH	
Fa a	Fa a [FA06]	FAL	
Ac ca	Fa ac ca [FA0707]	CAR	
AC C A	Fa ac C A [FA0705]	C A	
N-ac, a.	N-ac a. [FA0802]	NA	
N-ac a a	N-ac a a (ca ab) [FA0804]	NAE	
N-ac, a 🔺	N-ac_a. [FA0802]	NAT	
Wa	Wa . [FA0701]	WE	
Wa	Wa [FA0702]	WD	
FA	FAHFA a . [FA0701]	FA-EST	

• Variable constituents like fatty acyls/ alkyls are assigned ba • · · a a · b · C-a · a · b · DBE (C-a · ; :DBE), • · · a T $c = a_{1,2} + \dots + H_{\mathbf{p}} AC + \dots + AC$

TABLE 3A. Ca, abb. a. Ca , GL

C Na.	$\mathbf{L} \bullet = \mathbf{C} \mathbf{a}_{\perp}, \mathbf{LI}_{\mathbf{p}} \mathbf{ID} \mathbf{MA}_{\mathbf{p}} \mathbf{S}$	Abb, 👝 as
$M = ac_{1}/a_{1}, c_{2}, c_{3}$ (. , , c_{3})	M _a _, c _ , [GL01]	MG
$\mathbf{D}\mathbf{a}\mathbf{c}_{\mathbf{a}}/\mathbf{a}_{\mathbf{a}}$, $\mathbf{c}\mathbf{a}_{\mathbf{a}}$, $(\mathbf{a}_{\mathbf{a}},\mathbf{c}\mathbf{a}_{\mathbf{a}})$	$\mathbf{D}_{\mathbf{z}}\mathbf{a}_{\mathbf{z}}$, $\mathbf{c}_{\mathbf{z}}$, [GL02]	DG
$T_{A}ac_{A}a_{A}a_{A}a_{A}a_{A}a_{A}a_{A}a_{A}a$	Ta.a C [GL03]	TG
E	E [GL0305]	TG-EST
S, ac ₁₀ , c ₂₀ ,	G c ac [GL0401]	SOMG
M , a, ac , , ac , , , c , ,	G c ac c	MGMG
D , a, ac , , , , ac , , , , , , , , , , ,	G c ac c	DGMG
S , ac , , c , ,	G c ac [GL0501]	SODG
M , a, ac , , , ac , , , c , ,	$\mathbf{G} \in [\mathbf{a}, \mathbf{a}, \mathbf{c}, \mathbf{c}, \mathbf{c}, \mathbf{c}, \mathbf{c}]$ [GL0501]	MGDG
D , a, ac , , , ac , , , c , ,	$G_{1} = c_{1} + ac_{2} + c_{2} + [GL0501]$	DGDG

- TG 16:0/18:3/18:1.
- When only one acyl chain of TG is known, it is pre-
- When only one of the -• • ca • • a a a a a ..., , ..., TG 16:0_18:1 (, -2)_18:0.

• O = alkyl, e.g., TG O-52:3

- P = 2, O-a, -1-, -b (as -, b) $a_{p}, a_{r}, a_{r},$
- More than one "non"-ester bond is indicated in front of b a *di*, *i*, a *i*, a *a*.

GL CERO_p HOS_p HOLI_p IDS (G_p)

S (a, b) (b) (bC-a . (:DBE;O-a . (,, . . , $p^{\frac{1}{5}}$ 36:3;O, a (c b (A an $p \in \mathcal{L}$ $c \in \mathcal{L}$

and the second stands

- М,с,а, е, , , , , а ас,/ a, , c , • (Tab, 4B):
- **C** 16:0/18:2.
- For BMP and CL classes \mathbf{y} , \mathbf{y} , \mathbf{y} , \mathbf{b} -2/ -3/ $-2'/ -3'a -1/ -2/ -1'/ -2', c_{1}, c_{2}$

TABLE 3B. E a. , \ldots , a and a_{2} , $c \neq 3$.

В	Т	Se.L., ^a	$\mathbf{M}_{\mathbf{j}}$, $\mathbf{c}_{\mathbf{j}}\mathbf{a}_{\mathbf{j}}\mathbf{S}_{\mathbf{j}}\mathbf{e}_{\mathbf{j}}$, $\mathbf{L}_{\mathbf{j}}$, $\mathbf{b}_{\mathbf{j}}$	р 🐢 Ц., "°	$\mathbf{F}_{ij}, \mathbf{S}_{ij}, \mathbf{c}_{ij} \in \mathbf{L}_{ij}, \mathbf{c}_{ij}^d$

- MG 0:0/18:0/0:0 Ac , MG 18:0 MG 18:0
- MG O431.8321 c . (MG 18:0) T 12.71.8321 c . 0.005 T -26.2 -1.072 T . .-Ą.,

C...Na.

• When only one acyl chain or DG moieties of CL are known, ac, ac, a, a, c, cL 16:0_54:3 a CL 34:1_36:2, c, c, .

and the second second to the second

T a c pS a pE, c, , , , , , a a b ac a a a a , c - , a a b c a (24). T c, a , a, M. pLa M. LpLabb. a , c a a a c a abb -, a a a a , c a a a a , c abb -, a a a a , c a b a a aM, c, a c -, a p , , , a aA a a , c , , G, c , , (GL), a G, c -

(GL), a = O(C) = O(C), a = O(C), a

 \mathbf{R} , \mathbf{c} , \mathbf{s} , \mathbf{c} , \mathbf{a} , \mathbf{a} , \mathbf{c} , \mathbf{s}

• Oxygenation of PL to produce OxPL by direct action of

 $C_{p}450$, $a_{p}T_{p}$, $a_{p}UFA$ $ca_{p}L_{p}$, $a_{p}C_{p}$, $c_{p}C_{p}$

, . , <u>р</u>L (27).

- Nonradical reactive oxygen species like singlet oxygen or
- PL having a polar head group with a modif ed amino-func-• $(\mathbf{p} \mathbf{E} \mathbf{a} + \mathbf{p} \mathbf{S}) = \mathbf{a} + \mathbf{b} \mathbf{c} \mathbf{a}$, $\mathbf{a} = \mathbf{p} \mathbf{L} \cdot \mathbf{N}$.
- S , a • Tab 4E.

Sp HINGOLIp IDS (Sp)

A a ..., c a , 18 C-a ... , a DB, ..., ba , a, ... bac b , a , , a c , a , b a a a a a c. (28).C , abb - a $S_{\mathbf{p}}B_{\mathbf{q}}$, c. a a a a SM , a , a a a acc , a .,,

• In case the long-chain base is not known, the sum compo-🔹 , , , , , , ba, a a ac 🔩 a . b . C-a . ;:DBE;O-a . , , , , S_p B 34:1;O2.

- In ceramides the sphingoid backbone is annotated C-a $(\mathbf{DBE}; \mathbf{O} - \mathbf{a}) = (\mathbf{a} - \mathbf{a}) \mathbf{a} + (\mathbf{b} - \mathbf{a}) \mathbf{a} +$ b = C-a, BE;O-a, Nas , , ., C . 18:1;O2/16:0.
- DB geometry and positions of hydroxyl groups (or other ca a, ,) a a a a cab . a ac, -c a , Tab. 2B, , ., C > 18:1(4E);1OH,3OH/16:0.
- When the number of hydroxyl groups cannot be deter-. a ., • , • ba . . a ., a ., . (', ., • . • . a. . a,).
- For further characterization of $N_{\overline{2}}$ a as , , a caba A a partez, ca a , T a a a a a a a N-a a O(FA C-a :DBE) -

• Consequently, in shorthand notation from "Structure ONSEQUENTING", GREENORTHANA FROM

- Ceramide phosphates with unknown phosphate position a_{p_1} , b_{p_2} , C_{p_1} , C_{p_2} , 18:1;O2/16:0.
- Ceramide phosphates with known position of phosphate a OH- $\bullet \bullet$ a a a b , , , C $_{P}$ (1) 18:1(4E);3OH.
- Ceramide phosphates with 1,3 cyclic phosphate and OH- $\bullet \bullet$ a a b , , , C p (1, 3) 18:1(4E).

STEROLS (ST)

 . c
 ., a
 a
 ., c
 ., ca
 a, b
 a

 . c
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a
 . a

• In shorthand notation the

- · · · ·	1	1	MS,	2.5	, a	10	, a• ,
• •	÷20,	, •	(a	•	- 2	1)
S c	,	10	a c . 📿				

I a_{a} , a_{a} , a_{a} , c_{a} , a_{a} , c_{a} , a_{a} ,

411 1 1 1 3 3

A, aaa, ca 🔹 🔹 🔩 a, a, c. 🍱

Ac edg e

T a UK', W, c T a (G.a 203014/Z/16/Z) Llp ID MAp S a UK (2017), a b c J a a a L C, a ca a N c a C . . (ILCNC)

A h ORCID

C_i is fisees

T a , c ,

Abb e ia i

DB, b, b ; DBE, b, b , a ; LMSD, LL_P ID MA_P S S $_{\sim}$ c $_{\sim}$ Da aba ; O $_{P}$ L, $_{\sim}$ a , $_{\sim}$.