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on PAK2, but not PAK1 [54]. Glucose tolerance in vivo and the insulin-stimulated uptake
of 2-deoxy-D-glucose into extensor digitorum longus muscle ex vivo were mildly impaired
in mice lacking PAK2, but not PAK1, using muscle-specific deletion [54]. In addition to
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reflect protein levels of Rho GEFs in these tissues. It is known, for example, that P-Rex2
protein levels are much higher in the liver than in skeletal muscle of mice [75], and Tiam1
protein is expressed in skeletal muscle, [76] despite the mRNA data suggesting otherwise.
The mRNA data do, however, emphasize an important gap in current understanding: the
liver is a major metabolic organ that expresses multiple Rho GEFs; however, there is, to our
knowledge, no research data available yet on glucoregulatory roles of Rho GEFs in this
organ. More details on the expression, general functions and mechanisms of regulation of
these Rho GEFs are given in Section 4, where we describe their roles in glucose homeostasis.
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70 Dbl-type and 11 DOCK-type proteins in mammals. This figure depicts the domain structures of the nine mammalian 

Figure 2. Domain structure of Rho GEFs involved in glucose homeostasis. The Rho GEFs are classified into two families,
70 Dbl-type and 11 DOCK-type proteins in mammals. This figure depicts the domain structures of the nine mammalian
Dbl-type GEFs and of yeast Dck1, a homologue of mammalian DOCK1, which have been implicated to date in the regulation
of glucose homeostasis. Dbl-type Rho GEFs are characterized by a catalytic Dbl homology (DH) domain and a tandem
membrane-targeting pleckstrin homology (PH) domain. DOCK-type Rho GEFs have a membrane-targeting DHR-1 domain
and a catalytic DHR-2 domain. The structures of the DH and DHR-2 catalytic domains differ, but the guanine nucleotide
exchange reaction they catalyze to activate Rho GTPases is the same. Most Rho GEFs harbor additional domains that aid
in their regulation. Rho GEFs adopt an auto-inhibitory conformation that is relieved by the binding of signals to their
regulatory domains. DH, Dbl homology. PH, pleckstrin homology. DEP, disheveled, EGL-10 and pleckstrin. PDZ, PSD�95,
DLG, ZO-1 protein–protein interactions. PEST, motif rich in proline (P), glutamic acid (E), serine (S), and threonine (T).
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helix bundle structures. Ig, Immunoglobulin-like. FibIII, fibronectin III binding. Kinase, serine/threonine protein kinase. 
SMART EMBL software was used to determine domain structure. 

2. Glucose Homeostasis 

Figure 3. Metabolic tissue distribution of mammalian Rho GEFs that are known to be involved in
the regulation of glucose homeostasis. Nine mammalian Rho GEFs are currently known to regulate
glucose homeostasis in vitro or in vivo. Their distribution in human metabolic tissues is shown here,
as extracted from public database BioGPS (http://biogps.org, accessed on 10 April 2021) [74]. Data
are mean mRNA expression values determined by Affymetrix microarray. Units are z-scores of mean
fluorescence intensity, determined using multiple probes for each transcript and processed using
gcrma algorithms. Genes with z-scores above 5, indicated by the stippled black line, are considered
to be expressed in that tissue. The graph was drawn using GraphPad Prism 8.

2. Glucose Homeostasis

The human body is highly dependent on the tight regulation of glucose homeostasis.
Glucose is an essential metabolic source of energy, and the majority of cells require glucose
for metabolic function such as respiration, protein synthesis or energy storage as glycogen.
The human brain accounts for 60% of all glucose uptake from the blood, and a further 25%
is taken up by the liver and gastrointestinal tissues in the unstimulated and rested state [77].
Both of these absorption processes are insulin independent. Only 25% of glucose uptake is
insulin dependent, with the majority of this occurring in adipose and skeletal muscle tissues.
It is vital to maintain blood glucose within its physiological range, and in the fully-grown
adult human, this is between 4 and 7.8 mM or 72.0 and 140.4 mg/dL, with fasting levels
at approximately 5.5 mM/99 mg/dL [78]. Blood glucose levels that differ significantly
above or below this range can lead to hyper- and hypoglycemia, respectively. The clinical
symptoms of these conditions can range from mild, headaches and tiredness, to severe,
coma and death, so it is important to maintain the levels within a narrow range. Following
a meal, food is digested and the nutrients are absorbed into the blood circulation from
the intestines. Blood glucose levels transiently rise postprandial (after a meal), but return
to the resting baseline level due to homeostatic mechanisms. In the fasting state, blood
glucose levels are maintained through the liver by glycogenolysis, breakdown of glycogen
to glucose, and gluconeogenesis, glucose synthesis from non-carbohydrate sources such as
amino acids.

The major organs involved in glucose homeostasis are the brain, digestive tract, pan-
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3. Rho GTPases in Glucose Homeostasis

The control of glucose homeostasis by Rho family GTPases is an emerging field. Best
understood are the roles of Rac1, Cdc42 and RhoA in insulin-dependent glucose uptake
into adipose and skeletal tissues, and the roles of Rac1 and Cdc42 in glucose-stimulated
insulin secretion by pancreatic � cells. There is already an extensive, recent review by
Møller et al. on the involvement of Rho GTPases in these processes [98]. This excellent
review enabled us to keep the subsequent section brief, we will summarize key findings
and update on new literature. The main body of our review will focus instead on Rho
GEFs, which were not covered by Møller et al.

Both Rac1 and Cdc42 have been implicated in glucose-stimulated insulin secretion by
pancreatic � cells via their roles in actin rearrangement [99–102]. During the fasting state
when blood glucose levels are low, the actin cytoskeleton of pancreatic � cells prevents
insulin storage vesicles from fusing with the plasma membrane and releasing insulin.
An increase in blood glucose levels leads to actin cytoskeleton rearrangements, to allow
granule fusion and thus insulin release. This granule translocation process has been shown
to be dependent on both Cdc42 [102] and Rac1 [99] activation, and is likely mediated
through the Rac effector PAK1 [50,103], although the precise mechanism is still unclear.

Skeletal muscle is essential for maintaining whole-body glucose homeostasis, as it
accounts for the majority of insulin-stimulated glucose uptake [104,105]. Insulin activates
Rac1 and RhoA in muscle cells [92,94,106]. It is accepted that actin remodeling by Rac1
is required for GLUT4 translocation to the sarcolemma [53,92,107]. Insulin-stimulated
GLUT4 translocation allows glucose entry into skeletal muscle cells. Accordingly, many
studies have identified Rac1 as an essential regulator of insulin-dependent glucose uptake
into skeletal muscle [92,94,107,108]. These include genetic studies using tissue-specific
inducible knockout of Rac1 in the skeletal muscle of mice [53].

Rac1 has also been implicated in insulin-independent mechanisms of glucose uptake
in muscle cells. Sylow et al. found that Rac1 is activated in both mouse and human
skeletal cells following muscle contraction induced by physical exercise. Muscle-specific
inducible Rac1 deficiency in mice, or pharmacological inhibition of Rac1 with NSC23766 or
a derivative of this compound decreased the contraction-stimulated glucose uptake [109].
AMP-activated protein kinase (AMPK) and Rac1 pathways were found to be important
for the regulation of contraction-induced muscle glucose uptake ex vivo, in the muscle-
specific AMPK �1�2 KO mouse [110]. The Rac1 inhibitor II and deletion of AMPK �1�2,
independently, and additively, led to decreased 2-deoxy-D-glucose transport in soleus
muscle ex vivo. Yet, when the authors investigated this in vivo using a muscle-specific
kinase-dead AMPK mouse and inducible muscle-specific Rac1 KO mouse, they found that
exercise-induced glucose uptake depends on Rac1 and not AMPK in mice [110]. These
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elicit its effects on the actin cytoskeleton by the ROCK pathway and ezrin/radixin/moesin
proteins [115].

Adipose tissue is essential for maintaining glucose homeostasis, and for the postpran-
dial reduction in blood glucose levels. Rho GTPases play similar roles in adipose tissue, as
in skeletal muscle, regulating glucose uptake through translocation of GLUT4. The litera-
ture is less extensive and more controversial, but overall glucose homeostasis in adipose
tissue is thought to be regulated by different combinations of Rho GTPase family members
compared to muscle cells [92
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chromosome 20q13.1 that has been linked to type 2 diabetes in many studies [127], and
SNPs in the perigenic region of PREX1 have been proposed to associate with the likelihood
of obesity developing into type 2 diabetes [128]. P-Rex1 is highly expressed in leukocytes
and neurons, but is present at lower levels in many other cell types, whereas P-Rex2 is more
widely expressed except in leukocytes. P-Rex-deficient mouse strains have revealed roles
for P-Rex1 in the pro-inflammatory functions of leukocytes and developmental migration
of melanocytes, and roles for P-Rex2 in neuronal morphology and plasticity, and in motor
coordination [124]. Both P-Rex proteins are activated in response to the stimulation of
G protein-coupled receptors (GPCRs), by the G�
 subunits of heterotrimeric G proteins,
and in response to the stimulation of PI3K-coupled receptors, by PIP3, with additional
regulation through phosphorylation and protein /protein interactions [124]. P-Rex family
Rac GEFs are known to facilitate insulin signaling [124]. Upon insulin stimulation, P-Rex1
responds to the activation of PI3K and the production of PIP3, and transmits the insulin
signal through its catalytic Rac GEF activity. P-Rex2 may have this same role, but has
additionally been identified to inhibit the tumor suppressor PTEN. PTEN metabolizes PIP3
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Figure 4. P-Rex family Rac GEFs in insulin signaling. Insulin activates the insulin receptor (IR), leading to receptor
conformational changes which promote transphosphorylation and subsequent activation of the receptor tyrosine kinase
activity. Insulin receptor substrate-1 (IRS1) is phosphorylated and recruits PI3K to the plasma membrane. Class 1 PI3Ks
phosphorylate PtdIns(4,5)P2 to generate PIP3 [84]. PIP3 promotes the translocation of PDK1 and Akt to the membrane
through interaction with the PH domains, and phosphorylation of Akt by PDK1 and mTORC2 (PDK2) leads to the full
activation of Akt. P-Rex1 and P-Rex2 are direct binding partners of mTORC1 and mTORC2 [132], both of which are
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Figure 5. The roles of Rho family GEFs in pancreatic � cell glucose homeostasis. (A,B
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4.1.3. P-Rex2 In Vivo
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4.2.2. Vav2 in Pancreatic � Cells

A study by Veluthakal et al. highlighted Vav2 as a GEF for Rac1 in glucose-stimulated
insulin secretion, through the use of Vav2 siRNA knockdown in INS-1 832/13 pancreatic
� cells [101]. Using the Vav2:Rac1 interaction inhibitor EHop�016, and live cell imaging
with Lifeact-GFP biosensor, the authors were able to show a marked reduction in F-actin
depolymerization during the second phase of insulin secretion. This phase requires F-actin
cytoskeleton remodeling to allow the movement of granules from intracellular to plasma
membrane localization (Figure 5). It should be noted, however, that EHop�016 is unlikely
to be a specific inhibitor of Vav2, as it was designed to block the binding of Rho GEFs
to Rac [150], and as this review shows, other Rho GEFs are also implicated in the actin
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granules in INS 832/13 cells and in rat islets of Langerhans [159]. Syed et al. proposed that
hyperactivation of Tiam1/Rac1 may bring about apoptotic death of pancreatic � cells, as
NSC23766 treatment reduced the superoxide production and mitochondrial dysfunction
brought about by stress-related levels of glucose and saturated fatty acids [160]. The poten-
tial protective role that inhibition of Tiam1/Rac1 might play, was further shown through
use of an in vivo mouse model of type 1 diabetes (NOD mouse), where intraperitoneal
daily injection of NSC23766 significantly prevented the development of spontaneous dia-
betes [161]. Furthermore, NSC23766 was used to implicate Tiam1/Rac1 in the development
of diabetic retinopathy, through the activation of Nox2 and p38 MAP kinase leading to
mitochondrial tondrialhvivorial2-249(hrial)-255([)]TJ
0.03137 0.45882 0.71765 rg 0.03137 0.45882 0.71765 RG
 1 0 065 647.265 623.461 T162(161)]TJ
0 g 0 G
 0.992 0 45 G
 1.265 623.461 T–55([)]TJ
0.03137 0.45882 0.71765 rg 0.03137 0.45882 0.71765 RG
 1 0 05Tf 33.265 623.461 T164(161)]TJ
0 g 0 G
 0.992 0 470.877.265 623.461 Tm [(].2(Itrial)-247ulo)]TJ 1berial2-noevenia-
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�-PIX in Pancreatic � cells

Kepner et al. identified �-PIX as a Cdc42 GEF in MIN6 pancreatic � cells [173]. siRNA-
mediated knockdown of �-PIX reduced glucose-stimulated insulin secretion in these cells.
Cdc42 is a key regulator of the secondary sustained phase of insulin release from granules,
and leads to PAK, then Rac1 activation. Kepner et al. showed that caveolin-1, the main
component of caveolae in the plasma membrane, binds Cdc42 in MIN6 � cells. They
showed that �-PIX competes with caveolin-1 for Cdc42 binding at the boundary between
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70) and Vav2, enhanced insulin-stimulated Rac1 activation and insulin-dependent GLUT4
translocation to the plasma membrane. Expression of constitutively active Plekhg4 and
siRNA knockdown led to increased and decreased GLUT4 translocation, respectively.

4.6.2. Plekhg4 in Adipocytes

The Satoh group have shown a role for Plekhg4 in GLUT4 translocation in adipocytes [186].
Knockdown of Plekhg4 by siRNA treatment in differentiated 3T3-L1 adipocytes reduced
insulin-stimulated Rac1 activity, even in the presence of constitutively active Akt2, which
would usually increase Rac1 activity during the process of GLUT4 translocation. This
study suggested that Plekhg4 may lie downstream of Akt2 [186]; however, this is likely
to be through an intermediator protein as the GEF harbors no consensus sequence for
phosphorylation by Akt. Research is required to help decipher the mechanisms that
regulate Plekhg4, to enable GLUT4 translocation in skeletal muscle cells and adipocytes.

4.7. PDZ-RhoGEF

Rho guanine nucleotide exchange factor 11 (PDZ-RhoGEF) is a ubiquitously expressed
Dbl-type GEF that activates RhoA and is best known for its role in neurotrophin-induced
neurite outgrowth [187,188]. Alongside the DH/PH domain tandem, PDZ-RhoGEF harbors
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DOCK1 in the Yeast Stress Response

There are data suggesting that Rho5 may be implicated in the stress response of yeast
cells to low glucose conditions [192]. Glucose starvation induces Rho5 relocation from the
plasma membrane to the mitochondria, and this translocation is conferred by Dck1/Lmo1,
implicating the GEF in the change from cytoplasmic glycolytic fermentation to oxidative
phosphorylation where energy production is more efficient. It is unknown whether this
translates to mammalian cells, as there are key differences between the main roles of
mammalian Rac1 and yeast Rho5. For example, Rac1 in mammals primarily controls actin
dynamics. However, this role is only weakly conserved in the yeast homologue [192].

4.9. Summary of Rho GEF Functions in Glucose Homeostasis

In summary, 10 different Rho GEFs have been implicated to date in the regulation of
glucose homeostasis, nine of which are in mammals, and one, the DOCK1 homologue Dck1,
is in yeast. Among the mammalian Rho GEFs, P-Rex1, Vav2, Vav3, Tiam1, Kalirin and
Plekhg4 have been identified in GLUT4 translocation and/or insulin-stimulated glucose
uptake in skeletal muscle or adipose tissue. The Rho GEFs P-Rex1, Vav2, Tiam1 and �-PIX
have been implicated in the glucose-stimulated release of insulin by pancreatic � cells.
In vivo studies in mice have shown the Rho GEFs P-Rex2, Vav2, Vav3 and PDZ-RhoGEF to
be involved in glucose tolerance and/or insulin sensitivity, with deletion of these GEFs
either contributing to the development of metabolic syndrome or protecting mice from this
disease.

5. Conclusions and Future Challenges

We have summarized evidence for the emerging roles of Rho GTPases and Rho GEFs in
metabolism and metabolic diseases. The study of Rho GTPases in glucose homeostasis has
been limited by the wide-ranging essential cellular functions of these proteins, which mean
that long-term downregulation or overexpression are prone to inducing non-physiological
effects. Dominant-negative or constitutively active mutants are no longer widely used for
similar reasons. Rho GTPases function by protein/protein interaction, and pharmacological
inhibition is difficult to achieve with high specificity and efficacy. Some bacterial toxins
are highly efficient inhibitors, but with considerable cytotoxic effects. Increased use of
cell type-specific inducible deletion of the endogenous GTPase, as well as re-expression of
mutants to physiological levels, may advance our understanding of the roles Rho GTPases
play in metabolic processes, both in isolated cells and in animal models of metabolic disease.
Although great steps have been taken to decipher the roles of Rho-GEFs in metabolism,
these roles have been restricted to the relatively few examples discussed. Research should
focus on other processes such as hormone secretion from the intestine, and the counter-
regulatory responses to low glucose levels by glucagon. Global phosphoproteomic analysis
of myoblasts differentiated from type 2 diabetic patient iPS cells, has recently revealed cell
autonomous insulin resistance and dysregulation of a vast signaling network that goes
beyond canonical insulin signaling [193]. There was reduced phosphorylation of proteins
involved in Rho GTPase regulation, including the GEFs ARHGEF18 and ARHGEF10 and
the Rac1 GAP ARHGAP17, whilst there was downregulation of DOCK7 [193]. These are
exciting proteins for further research, as they may impact the actin cytoskeleton controlling
glucose uptake, or indeed regulate glucose homeostasis through cytoskeleton-independent
mechanisms.

The study of Rho GEFs promises to yield insights into specific signaling inputs into
Rho GTPases in glucose homeostasis. As we have described, several Rho GEFs have been
implicated in the regulation of glucose-stimulated insulin secretion in � cells (Figure 5),
and in the regulation of GLUT4 translocation and glucose uptake in skeletal muscle and
adipose tissue in response to various stimuli, amongst other processes. However, most
work has been performed in vitro, and there is a distinct lack of in vivo experiments to
show the true physiological relevance of both Rho GTPases and Rho GEFs in metabolism.
Among the 10 Rho-GEFs that have been identified to date, the roles of P-Rex2, Vav2, Vav3
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and PDZ-RhoGEF in glucose homeostasis mechanisms have so far been investigated using
mouse models with whole-body deletions, and only Vav2 has been investigated using
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