

 $R_{1} = \frac{1}{2} + \frac{1}{2$ 3,4, (_ • • $- \underbrace{F}_{\text{reg}} - \underbrace{F}_{\text{reg}} + \underbrace{F}_{\text{re$ --_\$ •• • • • . 1.

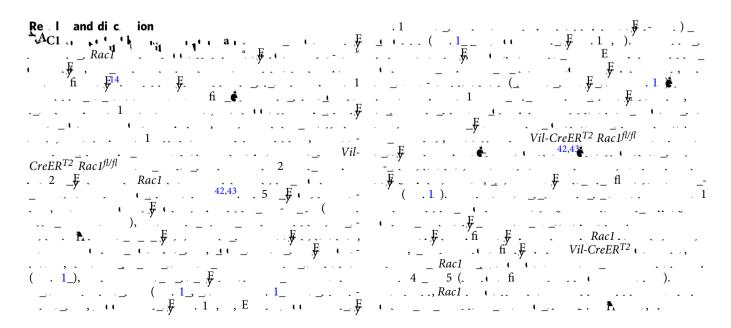


Fig. 2 VAV3 and TIAM1 are preg la ed follo ing APC lo . a Heatmap derived from RNA-seq analysis comparing whole tissue from wild-type ($r - \frac{1}{2}$, $r = \frac{1}{2}$) and APC intestines ($r = \frac{1}{2}$, $r = \frac{1}{2}$) and APC intestines ($r = \frac{1}{2}$, $r = \frac{1}{2}$) biologically independent animals for both APC and WT intestinal tissue. Log₂

fl , <u>F</u>4

Apc /+ $Egr5-EGFP-IRES-creER^{T2} Apc^{1/A} (...5)$ $Egr5-EGFP-IRES-creER^{T2} Apc^{1/A} (...5)$ Egr5 (..., Apc ..., Apc ...,

A VAV2, VAV3 A A I A C Vav2Vil-CreER^{T2} Apc

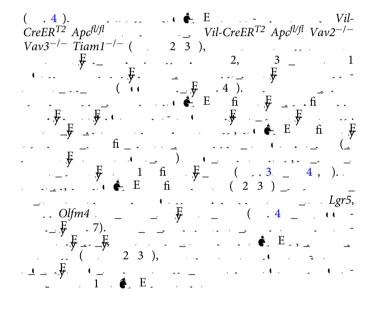
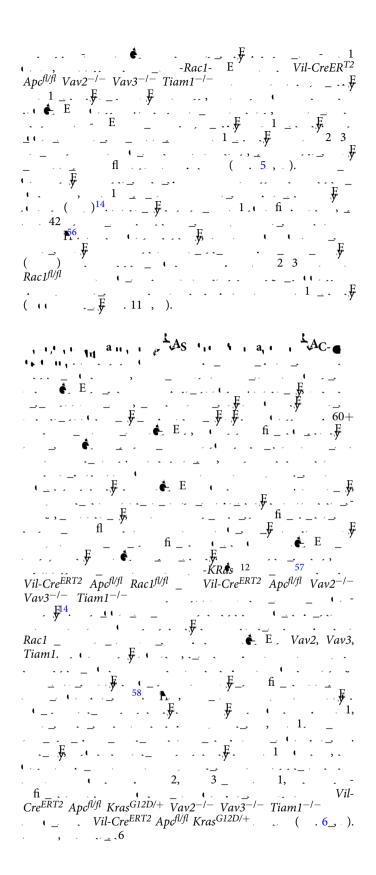



Fig. 4 Lo of hree GEF i able o prre he lo of Apc pheno pe. a RNAscope staining for 2 in intestine from reaction the transformed and tr

c-Myc 53 β_{-} , β (. Rac1 . .. - ¢, -2, 3 (_ 2, , , a ACa , , 1 ¹ 4 1 '₊ · -€ 2, 3_' **Կ** 1 ۰, , • - • . . . Vil-CreER^{T2} Apc^{fl/fl} · · · · ._. fi . 1 2, £ . 1

FLIM-FRET. . Vil-CreER ² Apc^{l/fl} Vil-CreER ^{T2} Apc^{l/fl} Vav2^{-/-} Vav3^{-/-} Tiam1^{-/-}

- 1779–1784 (2017).
- _____ Nat. 47. El. ._.
- $\begin{array}{c} 1/7 = 1, \\ F \\ Med. 21, 1350 = 1356 (2015). \\ , & 1 \\ F \\ \end{array}$ \underline{F} , \underline{F} 48
- 50. J _
- 51.
- **101**, 17216–17221 (2004). **11.** F_{1} **11.** F_{2} **11.** F_{2}
- 52 18919–18923 (2008).

- . Mol. Cell Biol. 22, 6582–91 (2002). (2004). (2004). (2004) $E_{2}^{-1} = \frac{1}{2} + \frac{1}{2}$ 56.
- 57. , . . _ . E Cell 5, 375-387 (2004).
- 58. . _ _ /, . . _ . _ . _ F ~ _ Death Differ. 24, 1681–1693 (2017). ic.
- ______, ... Cell Commun. Signal. 16, 46 (2018). 60.

- 62. F_{mass} is structure **1**, 1005 1007 (2007). 63. F_{mass} is science **278**, 120–123 (1997). 63. F_{mass} is science **302**, 459–462 (2003).
- 64. (2001).
- 65.
- . J. Exp. Med. **198**, 1595–608 (2003).
- 66.
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 ...
 · _ · · · - _ · _ · Ę

- 36842-36853 (2016).
- Biol. 148, 173–187 (2000).

- · - - ↓ - -.____. Genome Biol. 12, 1
- (2011).

Ackno ledgemen