
GxxxG motifs within the amyloid precursor protein transmembrane sequence are critical for the etiology of A β 42

Lisa-Marie Munter¹, Philipp Voigt², Anja Harmeier¹, Daniela Kaden¹, Kay E Gottschalk³, Christoph Weise¹, Rüdiger b b f . f , b

Aβ40 (%)
Aβ42 (%)

]	b0,	b	
			() %,	,	_
			, (,	0.0/
				(U	0 %,
).				
b	,		j			-
		f	•			f.
		•		b 0		
			,	D U		
			b			-
	f	- f			f b	
b		f		I ().
		f	b	`		•
f			Ь	(
I \			,	(
),			b			
	f	f f	b,			b
	b 0 .	,		f b		I
	f	f	b ,	b		
	().	Β,	ь		I
	().			,	1
			f b		(
		00 %)				
b			b 0			-
			b			
b						
D			, f		c	,
			Ι	_	f	
	().		f		-
		ff		b		
f						f
			f b			_
		f	1 1)			
				-		
	().		I		

b), f f f b I-). f b f I **b** 0 b ff **b** 0 b ff 00 % f b 0 (f b f b ff ff **b** 0 b f **b** 0

Effects of GxxxG mutants on $A\beta$ production are independent of the APP ectodomain

f b- f b b

f). f **b** 0 ff b

GxxxG mutants increase Aβ37 and Aβ35/Aβ34 levels

g. f f g. L. b f 0 - , (). . **b** f f b Ι,). b b f b b () 0 (f)).

						_			
		-	,	, I , I	,	,	,		
Ι			(I),		•		(`
·	f f	. (-) f	(f	٠,	-	m)) -
ToxR as	say			f					
f	f		•	-					-
	1	f	IacZ	f E. o	b coli)-	,		
b-	-b-	-		(et al,).		-
Molecul	ar mo	delin ,	g ff	, -				f	_
f 000		,	-				f	-	,
0 0 ° f				,	,	- +			

-f f - - -

f 0 . J Biol Chem

281:

, f . FEBS Lett 309: 0

(00) f - Nat Cell Biol 5:

f (00) f	f . EMBO J 25: - . Mol Cell 6:	, ((00) - J , ,	f	f . Mol Cell 15:
, , , , , , , , , , , , , , , , , , ,	, , J, , f 0 (00) f .	414:	, (00) J , ,	, f I, f	- . Nature ,
, , , ,	, ,				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, , , () -				
. Si , , , f (00	cience 286:) f - f -				
J Biol Chem 280: j , , f	, (00)				
J Biol Chem 279: 0 0 , , , (00)					
. J Biol Chem 281: 0					