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Results

Age-dependent aggregating proteins are intrinsically prone to
aggregate in certain tissues
Previously, we performed an extensive characterization of the aggregation of two proteins, casein

kinase I isoform alpha (KIN-19) and Ras-like GTP-binding protein rhoA (RHO-1). Both KIN-19 and

RHO-1 were identified among the proteins with the highest propensity to become insoluble with

age in wild-type C. elegans somatic tissues (David et al., 2010). In vivo analysis of animals express-

ing these proteins fused to fluorescent tags showed the appearance of immobile deposits with age

(David et al., 2010). Among the insoluble proteome, the enrichment of certain physico-chemical fea-

tures such as high aliphatic amino acid content or propensity to form b-sheet-rich structures shows

that age-dependent protein aggregation is not random (David et al., 2010; Lechler et al., 2017;

Walther et al., 2015). To understand whether KIN-19 and RHO-1 have an intrinsic capacity to aggre-

gate similar to disease-associated proteins or whether a progressive accumulation of protein dam-

age caused by non-enzymatic posttranslational modifications is required to induce their

aggregation, we evaluated the dynamics of protein aggregation in vivo. Protein labeling with

mEOS2, a green-to-red photoconvertible fluorescent protein, has been successfully used to track

protein dynamics (McKinney et al., 2009). In the present case, we used the mEOS2 tag to investi-

gate how fast newly synthesized KIN-19 and RHO-1 aggregate. For this purpose, we generated

transgenic animals expressing KIN-19::mEOS2 in either the pharynx or in the body-wall muscles and

transgenic animals expressing RHO-1::mEOS2 in the pharynx. The mEOS2 tag did not disrupt the
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fluorescent-tagged amyloid proteins due to quenching (Chen et al., 2017; Kaminski Schierle et al.,

2011; Murakami et al., 2015
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Discussion
Widespread protein aggregation in the context of normal aging has been observed in C. elegans

(David et al., 2010; Reis-Rodrigues et al., 2012; Walther et al., 2015), Drosophila (Demontis and

Perrimon, 2010), Saccharomyces cerevisiae (Peters et al., 2012
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Our findings predict that age-dependent protein aggregation would result from decreased levels of

molecular chaperones linked to protein synthesis rather than molecular chaperones induced by

stress (Albanèse et al., 2006; Pechmann et al., 2013
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Continued

Reagent type
(species) or
resource Designation Source or reference Identifiers

Additional
information

Chemical
compound, drug

X34 SML1954, Sigma-
Aldrich, Germany

1 mM final

Chemical
compound, drug

thioflavin T #ab120751, abcam,
UK

50 mM

Commercial
assay or kit

5-Hydroxytryptamine
creatinine sulfate
complex

H7752, Sigma-Aldrich,
Germany

10 mM

Commercial
assay or kit

Nickel Sepharose 6
Fast Flow beads from
HisTrap FF Crude column

GE Healthcare,
Uppsala, Sweden

Cloning and strain generation
Cloning was carried out using the Gateway system (Life Technologies, Darmstadt, Germany). Pmyo-

2 promoter and pKA1062 mEOS2 translational vector were kindly provided by Dr. Brian Lee and Dr.

Kaveh Ashrafi, UCSF. rho-1 cDNA was amplified from a cDNA library prepared from total RNA iso-

lated from N2 worms. Plasmid containing biotinylation enzyme birA was kindly provided by Dr. Ekke-

hard Schulze (University Freiburg). All constructs contain the unc-54 30 UTR. The tagrfp vector was

obtained from Evrogen (AXXORA, San Diego, CA). Venus was generated by targeted mutation of

the yfp gene. HisAvi-tagged KIN-19 and RHO-1 were generated by cloning at the C-terminus a

RGSH6 tag together with a bacterially derived polypeptide serving as a biotinylation signal in vivo as

previously described (Schäffer et al., 2010; Tagwerker et al., 2006). Constructs were sequenced at

each step. Transgenics were generated by microinjection of the constructs at concentrations

between 10 and 50 ng/ml into N2 animals. Stable lines were generated by irradiating the animals

containing the extrachromosomal array in a CL-1000 Ultraviolet Crosslinker (UVP) with 275mJ x 100.

100% transmission lines were backcrossed at least four times into the wild-type N2 strain.

Maintenance
All strains were kept at 15˚C on NGM plates inoculated with OP50 using standard techniques. Age-

synchronization was achieved by transferring adults of the desired strain to 20˚C and selecting their

progeny at L4 stage. All experiments were performed at 20˚C. Day 1 of adulthood starts 24 hr after

L4.

Photoconversion of mEOS2-tag and quantification of fluorescence
levels
For photoconversion, worms were transferred onto a small (diameter 35 mm) NGM plate without

food. The plate was placed 0.5 cm below a collimator (Collimator High-End Lumencor, Leica, Ger-

many) fitted with a filter for blue fluorescence (387/11 BrightLine HC, diameter 40 mm) and illumi-

nated by a Lumencor Sola SE II (AHF, Tübingen). Conversion of mEOS2 in transgenic animals was

performed four times for five minutes, with 2 min pauses between exposures. To reduce translation,

worms were placed 2 hr before conversion on bacterial seeded plates with 500 mg/ml cycloheximide

and kept after conversion on plates with cycloheximide for 48 hr during aggregation quantification.

Aggregation quantification in vivo
Aggregation levels were determined using Leica fluorescence microscope M165 FC with a Planapo

2.0x objective. Aggregation was quantified following pre-set criteria adapted to the transgene

expression pattern and levels in the different transgenic C. elegans models: Animals expressing

Pkin-19::KIN-19::mEOS2, Pkin-19::KIN-19::Venus or Pkin-19::KIN-19::TagRFP were divided into less

than 10 puncta (low aggregation), between 10 and 100 puncta (medium aggregation) and over 100

puncta in the anterior pharyngeal bulb (high aggregation). Animals overexpressing Pmyo-2::RHO-1::

Venus were divided into less than 10 puncta in anterior or posterior pharyngeal bulb (low aggrega-

tion), over 10 puncta in either bulbs (medium aggregation) and over 10 puncta in both bulbs (high

aggregation). Because of extensive RHO-1 aggregation in animals overexpressing Pmyo-2::RHO-1::
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X34 staining
Worms were incubated in 1 mM X-34 in 10 mM Tris-HCl pH 8 for 2 hr, gently shaking at room tem-

perature as previously described (Link et al., 2001). Worms were then transferred to bacteria

seeded NGM plates to destain overnight before confocal imaging.

Pharyngeal pumping analysis
Electrical activity of the pharyngeal pumping was measured using the NemaMetrix ScreenChip Sys-

tem (NemaMetrix, Eugene, OR). The entire setup is housed in a laboratory that maintained a tem-

perature of approximately 21˚C. Baseline noise was typically between 5 and 25 mV.

For each experiment, 50 worms were picked in 1.5 ml of M9 +0.01% Triton and washed three

times via low-speed centrifugation. Worms were resuspended in 1.5 ml M9 +0.01% Triton + 10 mM

5-Hydroxytryptamine creatinine sulfate complex (Serotonin creatinine sulfate monohydrate) (Sigma,

H7752) and incubated for 20 min. The ScreenChip system was placed on a stereoscope and loaded

with a fresh screen chip. The screen chip was then vacuum-filled with M9 +0.01% Triton+10 mM 5-

Hydroxytryptamine creatinine sulfate complex and the NemAquire software initiated for baseline

noise checking. The animals were loaded into the recording channel of the screen chip via vacuum.

After loading each animal, we waited at least 30 s or until the pumping became regular before start-

ing to record. Each animal was recorded for approximately 2 min regardless of whether pumping

activity was observed or not. Between 20 and 40 animals were recorded for each condition.

The recordings were analyzed by NemAnalysis v0.2 software using the ‘Brute Force’ optimization

method. The ideal settings were chosen automatically from all combinations of the bounds settings

(Minimum SNR from 1.4 (low) to 2.0 (high), with a Step size of 0.1; Highpass Cutoff from 10 (low) to

20 (high), with a Step size of 5) and applied to produce the analysis results. Data was exported into

Excel for statistical analysis with the student’s t test.

Thrashing analysis
To quantify movement in terms of body-bends-per-second, movies of worms swimming in liquid

were acquired with high frame rates (15 frames per second) using a high-resolution monochrome
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significantly thinner or highly wrinkled, or with large empty space between. The pharyngeal muscle

structure was considered severely defective when the actin filament structure showed large holes.
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Preparation and analysis of worm lysates for fibrils by SIM
Nunc Lab-Tek II Chamber Slide (Sigma, Dorset, UK) were coated for 30 min with 0.01% poly-L-Lysine

(P4707, Sigma) before incubation for 1 hr with either nickel bead extracted fibrils or resuspended

worm pellets prepared as described above. RHO-1::tagRFP expressing transgenics (DCD13) and

fem-1(-) mutants (CF2137; the non-aggregated control worm) extracts were incubated with 50 mM

thioflavin T (ThT) (#ab120751, abcam, UK) for 1 hr and washed three times in PBS before imaging.

To visualize amyloids from worm extracts, we used our custom-built SIM providing a spatial resolu-

tion approaching 90 nm at frame rates reaching 22 Hz (Young et al., 2016). Hardware control and

image reconstruction were performed with software written in LabView and Matlab (Ströhl and

Kaminski, 2015). For visualization, ImageJ was used.
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