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Oxygenated polyunsaturated fatty acids (PUFA) (oxylipins)
are essential bioactive lipid mediators generated during
inflammation/infection. They are generated by cycloox-

ygenases (COX), lipoxygenases (LOX), or cytochrome P450s
(CYP), expressed in a variety of cells and tissues1–10. They signal
through activation of G protein-coupled receptors (GPCRs) at
sub nM concentrations1,5–16. Oxylipin signaling requires deacti-
vation; however, our understanding of how this happens during
infection is poor. Systemic pathways for individual oxylipins,
including thromboxane, prostacyclin and hydro-
xyeicosatetraenoic acids (HETEs) were uncovered in healthy
humans decades ago17–20. There, infusion of exogenous labeled
lipids enabled determination of half-life and metabolites, some of
which appear immediately, slowly disappearing over several
minutes21. Urinary metabolite analysis became the gold standard
for whole body oxylipin analysis. Separately, peroxisomal β-
oxidation of individual oxylipins was explored using liver
microsomes. There, partial β-oxidation revealed truncated pro-
ducts termed dinors (minus 2 carbons) and tetranors (minus 4
carbons). These were identified as stable intermediates in tissue,
plasma and urine21.

Aside from peroxisomes, mitochondria contain fully competent
β-oxidation machinery, used for the first steps of FA-dependent
energy metabolism, FA oxidation (FAO)22,23. Here, FA are con-
verted to acetyl-CoA which enters the tricarboxylic cycle (TCA)
providing substrates for oxidative phosphorylation (OxPhos)24.
Although mediated by distinct enzymes to peroxisomes, mito-
chondrial β-oxidation also involves sequential removal of 2-carbon
fragments from the carboxyl terminus. More recently, there has been
significant interest in how mitochondrial FAO supports innate and
adaptive immunity in T cells and macrophages25,26. Saturated FA
such as palmitate or stearate are considered the main β-oxidation
substrates; however, oxylipins generated abundantly during inflam-
mation have not been considered19. We recently showed that
endogenously generated platelet oxylipins are removed by carnitine
palmitoyltransferase-1 (CPT1), the mitochondrial import protein for
FAs27. However, it is not known whether mitochondria also remove
oxylipins in other leukocytes, nor how this might be regulated
during inflammation/infection, if this impacts lipid signaling, and if
it supplies acetyl-CoA to OxPhos. These are important questions
since large amounts of diverse oxylipins are generated during
inflammation/infection, with downstream autocrine and paracrine
signaling being a major contributor to the overall inflammatory
response. Currently, there is significant interest in how mitochondria
contribute to inflammation, and their role in
immunometabolism26,28,29. One view is that in lipopolysaccharide
(LPS)-treated macrophages (e.g., M1 phenotype) mitochondrial
OxPhos is shut down in favor of increased glycolysis, along with the
increased synthesis of FA30. How this process impacts the bioa-
vailability of oxylipins and their inflammatory bioactivity is
unknown.

To address these questions, we examine the role of mitochondria
in removing oxylipins in macrophages during inflammatory acti-
vation in vitro and in vivo, and how modulation of physiological
oxylipin levels impacts leukocyte signaling relevant to an acute
inflammatory challenge (macrophages, neutrophils, T cells). Genetic
and lipidomic approaches characterize a metabolic β-oxidation
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LPS challenge, the eicosapentaenoic acid product 17,18-diHETE,
generated by soluble epoxide hydrolase oxidation of CYP-derived
17,18-EET, was suppressed by etomoxir (Supplementary Fig. 1e).
Overall, these data indicate that peritoneal macrophage oxylipin
secretion (12/15-LOX or COX-2 derived) is counterbalanced by
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from other immune or stromal cells during inflammation. Serum
contains numerous oxylipins from 12-LOX and COX-1, primarily
monohydroxy isoforms and thromboxane, generated by white
cells and platelets, but few PGs. Serum forms during innate
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forms via saturation of the triene, confirming the structure as
8(S)-hydroxy-6E,10Z-hexadecadienoic acid.

Next, the impact of CPT1 inhibition on the metabolism of
exogenous 12(S)-HETE or 12(R)HETE was tested. Both HETEs
were rapidly removed by LPS-stimulated RAW cells, with around
0.15% or 0.4% remaining after 3 h, for the S and R forms,
respectively (Fig. 2b, left panel). Cellular and supernatant 12(S)-

HETE and 12(R)HETE were both increased by CPT1 inhibition,
with 12(R)HETE most strongly impacted. Based on the impact of
etomoxir, the primary removal appeared to be non-mitochondrial
(Fig. 2b). 12-HETE was converted to tetranor trienes and dienes,
which were detected mainly outside the cells (Fig. 2b and
Supplementary Fig. 8). These were around 5–8-fold increased by
CPT1 blockade, confirming that they are also dynamically
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metabolized by mitochondria in LPS-stimulated macrophages
(Fig. 2b and Supplementary Fig. 8). In the case of the diene, both
S and R enantiomers were similarly elevated by etomoxir
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malonyl-CoA, which is formed from acetyl-CoA, a product
of which themselves depend at least in part on CPT1 for
formation. Thus, while both synthesis and degradation of
oxylipins simultaneously occur in macrophages, steady-
state levels will depend on the cells’ metabolic status, and
whether CPT1 is mainly supporting degradation (by β-
oxidation) or synthesis (by supplying TCA intermediates)
of individual oxylipins. Thus, CPT1 could either increase or
decrease levels of oxylipins and their metabolites concur-
rently, as seen in our study. Detailed flux analysis of this
phenomenon is required to further our understanding since
a role for regulation of elongation/desaturation was not
clearly seen in our study.

Here, we show that mitochondrial oxylipin removal takes place
during inflammation on a background of reduced OxPhos, a well-
known response to LPS stimulation by macrophages28. However,
β-oxidation requires a basal level of OxPhos both to regenerate
NAD+ and oxidized flavin cofactors in the electron transferring
fl
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