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Oxygenated polyunsaturated fatty acids (PUFA) (oxylipins)
are essential bioactive lipid mediators generated during
inflammation/infection. They are generated by cycloox-

ygenases (COX), lipoxygenases (LOX), or cytochrome P450s
(CYP), expressed in a variety of cells and tissues1–10. They signal
through activation of G protein-coupled receptors (GPCRs) at
sub nM concentrations1,5–16. Oxylipin signaling requires deacti-
vation; however, our understanding of how this happens during
infection is poor. Systemic pathways for individual oxylipins,
including thromboxane, prostacyclin and hydro-
xyeicosatetraenoic acids (HETEs) were uncovered in healthy
humans decades ago17–20. There, infusion of exogenous labeled
lipids enabled determination of half-life and metabolites, some of
which appear immediately, slowly disappearing over several
minutes21. Urinary metabolite analysis became the gold standard
for whole body oxylipin analysis. Separately, peroxisomal β-
oxidation of individual oxylipins was explored using liver
microsomes. There, partial β-oxidation revealed truncated pro-
ducts termed dinors (minus 2 carbons) and tetranors (minus 4
carbons). These were identified as stable intermediates in tissue,
plasma and urine21.

Aside from peroxisomes, mitochondria contain fully competent
β-oxidation machinery, used for the first steps of FA-dependent
energy metabolism, FA oxidation (FAO)22,23. Here, FA are con-
verted to acetyl-CoA which enters the tricarboxylic cycle (TCA)
providing substrates for oxidative phosphorylation (OxPhos)24.
Although mediated by distinct enzymes to peroxisomes, mito-
chondrial β-oxidation also involves sequential removal of 2-carbon
fragments from the carboxyl terminus. More recently, there has been
significant interest in how mitochondrial FAO supports innate and
adaptive immunity in T cells and macrophages25,26. Saturated FA
such as palmitate or stearate are considered the main β-oxidation
substrates; however, oxylipins generated abundantly during inflam-
mation have not been considered19. We recently showed that
endogenously generated platelet oxylipins are removed by carnitine
palmitoyltransferase-1 (CPT1), the mitochondrial import protein for
FAs27. However, it is not known whether mitochondria also remove
oxylipins in other leukocytes, nor how this might be regulated
during inflammation/infection, if this impacts lipid signaling, and if
it supplies acetyl-CoA to OxPhos. These are important questions
since large amounts of diverse oxylipins are generated during
inflammation/infection, with downstream autocrine and paracrine
signaling being a major contributor to the overall inflammatory
response. Currently, there is significant interest in how mitochondria
contribute to inflammation, and their role in
immunometabolism26,28,29. One view is that in lipopolysaccharide
(LPS)-treated macrophages (e.g., M1 phenotype) mitochondrial
OxPhos is shut down in favor of increased glycolysis, along with the
increased synthesis of FA30. How this process impacts the bioa-
vailability of oxylipins and their inflammatory bioactivity is
unknown.

To address these questions, we examine the role of mitochondria
in removing oxylipins in macrophages during inflammatory acti-
vation in vitro and in vivo, and how modulation of physiological
oxylipin levels impacts leukocyte signaling relevant to an acute
infl
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LPS challenge, the eicosapentaenoic acid product 17,18-diHETE,
generated by soluble epoxide hydrolase oxidation of CYP-derived
17,18-EET, was suppressed by etomoxir (Supplementary Fig. 1e).
Overall, these data indicate that peritoneal macrophage oxylipin
secretion (12/15-LOX or COX-2 derived) is counterbalanced by
CPT1-mediated uptake into mitochondria. However, CYP-
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from other immune or stromal cells during inflammation. Serum
contains numerous oxylipins from 12-LOX and COX-1, primarily
monohydroxy isoforms and thromboxane, generated by white
cells and platelets, but few PGs. Serum forms during innate
immune responses, thus oxylipin metabolism may occur in local
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forms via saturation of the triene, confirming the structure as
8(S)-hydroxy-6E,10Z-hexadecadienoic acid.

Next, the impact of CPT1 inhibition on the metabolism of
exogenous 12(S)-HETE or 12(R)HETE was tested. Both HETEs
were rapidly removed by LPS-stimulated RAW cells, with around
0.15% or 0.4% remaining after 3 h, for the S and R forms,
respectively (Fig. 2b, left panel). Cellular and supernatant 12(S)-

HETE and 12(R)HETE were both increased by CPT1 inhibition,
with 12(R)HETE most strongly impacted. Based on the impact of
etomoxir, the primary removal appeared to be non-mitochondrial
(Fig. 2b). 12-HETE was converted to tetranor trienes and dienes,
which were detected mainly outside the cells (Fig. 2b and
Supplementary Fig. 8). These were around 5–8-fold increased by
CPT1 blockade, confirming that they are also dynamically
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metabolized by mitochondria in LPS-stimulated macrophages
(Fig. 2b and Supplementary Fig. 8). In the case of the diene, both
S and R enantiomers were similarly elevated by etomoxir
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particular the abundant prostacyclin (PGI
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lower oxylipin levels. However, there was a significant
concentration-dependent impact in three individual donors
(Fig. 5g, h). Thus, the higher amount, consistent with levels
detected during CPT1 inhibition, was significantly more potent at
activating neutrophils. Monocyte ROS generation was unaffected
at either dose (Fig. 5g, h). Next, T-cell responses in peripheral
blood mononuclear cell (PBMC) were determined by measuring
TNF generation following TCR-specific stimulation of CD4+ and
CD8+ T-cell populations. Here, we found that in general oxyli-
pins had a statistically significant suppressive effect on TNF
production in both subsets. Post-test analysis revealed that the
lower level of oxylipins alone significantly suppressed TNF in
CD4+ cells. In the case of CD8+ cells, only the high level showed
significance, while there was a trend at both doses (Fig. 5i). Taken
together, these pilot data indicate that modulation of oxylipin
levels, within physiological amounts detected in vivo can regulate
immune responses of neutrophils and T cells in vitro, supporting
the concept that oxylipin removal by mitochondria during
inflammation could regulate broader cellular innate immune
responses.

Transcriptional analysis of human neonatal bacterial sepsis
identifies gene candidates responsible for mitochondrial oxy-
lipin metabolism. The enzymes that import oxylipins into
mitochondria are not conclusively known, but it is very likely that
those importing long-chain FA are involved. These include five
acyl-CoA synthetase long-chain family members (ACSL1,3-6), as
well as CPT1a, 1b, 1c, and CPT2. The gene products mediate the
formation of −CoA and then -carnitine derivatives that are
required for long-chain FA uptake across mitochondrial mem-
branes (Supplementary Fig. 10 and Supplementary Table 2). This
is followed by mitochondrial β-oxidation, which catalyzes
sequential removal of 2-carbon fragments to generate acetyl-CoA,
and chain shortened metabolites. Genes that encode proteins that
metabolize long-chain PUFA include HADHA, HADHB, ECI1,

DECR1, and ACADVL (Supplementary Fig. 15 and Supplemen-
tary Table 2)
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via Land’s cycle esterifi
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the model (Fig. 6a–c), along with CPT2 induction in human
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malonyl-CoA, which is formed from acetyl-CoA, a product
of which themselves depend at least in part on CPT1 for
formation. Thus, while both synthesis and degradation of
oxylipins simultaneously occur in macrophages, steady-
state levels will depend on the cells’ metabolic status, and
whether CPT1 is mainly supporting degradation (by β-
oxidation) or synthesis (by supplying TCA intermediates)
of individual oxylipins. Thus, CPT1 could either increase or
decrease levels of oxylipins and their metabolites concur-
rently, as seen in our study. Detailed flux analysis of this
phenomenon is required to further our understanding since
a role for regulation of elongation/desaturation was not
clearly seen in our study.

Here, we show that mitochondrial oxylipin removal takes place
during inflammation on a background of reduced OxPhos, a well-
known response to LPS stimulation by macrophages28. However,
β-oxidation requires a basal level of OxPhos both to regenerate
NAD+ and oxidized flavin cofactors in the electron transferring
fl
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washed with PBS, then lifted with lidocaine/EDTA or ACCUTASE™ (Sigma-
Aldrich), plated at 1–2 × 106 per well of a 6-well plate and rested for 24 h. Cells
were washed and then refed with DMEM (as above, with MCSF) and cytokines as
follows: M0: medium only, M1: LPS (100 ng/ml)/IFN-γ (20 ng/ml), M2: IL-4
(20 ng/ml). For some experiments, FCS was omitted. Etomoxir (25 µM) was added
in some experiments. After 24 h supernatant was recovered and frozen at −80 °C.
Cells were washed and then recovered in 1 ml of PBS using rapid scraping on ice,
and the cell suspension was immediately quenched in liquid N2 prior to storage at
−80 °C.

Samples were analyzed for phenotype confirmation (cytokine production,
mRNA gene expression by real-time PCR) and lipid composition, as described.
CCL5, TNF, and IL-6 in supernatants were measured using ELISAs (Mouse TNF;
Mouse CCL5; Mouse IL-6, R&D Systems) according to the manufacturer’s
protocols. Confirmation of phenotype is shown in Supplementary Fig. 11b, c. Total
RNA was recovered using the RNeasy Mini Kit (QIAGEN, 74104) according to the
manufacturer’s instructions. RNA concentration and purity were determined using
a Nanodrop spectrophotometer. cDNA was prepared from 1 µg of RNA. RNA was
reverse-transcribed using superscript III reverse transcriptase (Invitrogen) in a total
volume of 20 µL for 1 h at 50 °C, and the reaction was terminated at 70 °C for
15 min. Power SYBR Green PCR Master Mix (Thermo Fisher Scientific) was used
for real-time PCR. The Master Mix (10 μl) was added to dH2O (7.5 μl), and 1 μl
primer mix (0.5 μg/ml each primer) to make a gene-specific master mix; cDNA
(1.5 μl) from each sample was added to the reaction mix (17.5 μl) in a 96-well plate
well. The plate was inserted into a QuantStudio 3 Real-Time PCR system and the
PCR amplification started as per instrument instruction: 50 °C 2 min; 95 °C 10 min;
95 °C 15 s; 60 °C 1 min; Repeat 3–4 for 40 cycles; 95 °C 15 s; 4 °C end. Primers used
for real-time PCR were designed to be intron-spanning, and to have a melting
temperature 55–65 °C. The intron-spanning aspect ensured that only mRNA and
not genomic DNA (gDNA) were amplified. All primers and oligonucleotides were
obtained (Sigma, Gillingham, UK) as salt-free purified lyophilized DNA. The
sequences of the real-time PCR primers used are shown in Supplementary Table 3.

Metabolism of exogenous 12-HETE and 12-HETE-d8 by RAW cells. RAW cells
(2 × 106/ml media) were supplemented with 9 µM 12(S)-HETE, 12(S)-HETE-d8,
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(ranging from 1.37 × 105
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Analysis of 12-HETE incorporation into PLs by RAW264 cells. For MS precursor
scanning, 1 × 106 RAW264 cells were seeded in a 6-well plate in DMEM supple-
mented with 10% FBS. The next day, cells were washed twice with PBS and 2 ml
serum-free RPMI (no phenol red) was added to each well. Cells were treated for 3 h
with 100 ng/ml LPS, with and without 2.8 μg 12(S)-HETE/106cells. Following 3-h
incubation, cells were scraped into their media and immediately transferred to
2.5 ml extraction solvent (hexane:isopropanol) and extracted as described in
Methods. For subsequent experiments to quantify 12-HETE incorporated into PLs,
2 × 106 cells were seeded into 6-well plates in DMEM supplemented with 10% FBS.
The next day, cells were washed twice with PBS and 1 ml serum-free RPMI (no
phenol red) was added to each well. Cells were treated for 3 h with and without
100 ng/ml LPS and with and without 1.4 μg 12(S)-HETE/106cells. Following a 3-h
incubation, cells were scraped directly into their culture media and immediately
transferred to 2.5 ml extraction solvent and extracted using the hexane:isopropanol
method, as described in the Methods section. Lipids were analyzed on a Sciex 6500
QTrap, with chromatography as follows: Luna 3 μm C18 150 × 2 mm column
(Phenomenex, Torrance, CA) with a gradient of 50–100% B over 10 min followed
by 30 min at 100% B (A, methanol:acetonitrile:water, 1 mM ammonium acetate,
60:20:20; B, methanol, 1 mM ammonium acetate) with a flow rate of 200 μl/min.
Source and MS conditions were as follows: CUR 35, IS-4500, TEM 500, GS1 40,
GS2 30, DP-50, CE-38, CXP-11. First, a precursor scan (PREC 319.2) was per-
formed in negative mode to determine a list of precursor PE ions present in the cell
extract, scanning a mass range of 600–
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