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Abstract: Autophagosome biogenesis occurs in the transient subdomains of the endoplasmic reticu-
lum that are called omegasomes, which, in fluorescence microscopy, appear as small puncta, which
then grow in diameter and finally shrink and disappear once the autophagosome is complete. Au-
tophagosomes are formed by phagophores, which are membrane cisterns that elongate and close
to form the double membrane that limits autophagosomes. Earlier electron-microscopy studies
showed that, during elongation, phagophores are lined by the endoplasmic reticulum on both sides.
However, the morphology of the very early phagophore precursors has not been studied at the
electron-microscopy level. We used live-cell imaging of cells expressing markers of phagophore
biogenesis combined with correlative light-electron microscopy, as well as electron tomography of
ATG2A/B-double-deficient cells, to reveal the high-resolution morphology of phagophore precursors
in three dimensions. We showed that phagophores are closed or nearly closed into autophagosomes
already at the stage when the omegasome diameter is still large. We further observed that phagophore
precursors emerge next to the endoplasmic reticulum as bud-like highly curved membrane cisterns
with a small opening to the cytosol. The phagophore precursors then open to form more flat cisterns
that elongate and curve to form the classically described crescent-shaped phagophores.

Keywords: autophagy; phagophore; isolation membrane; omegasome; ATG13; DFCP1; ATGZ2;
correlative light-electron microscopy
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membranes) nucleate and elongate inside omegasomes. When the phagophore reaches
maturity, it fuses to form a double-membraned autophagosome, and the DFCP1-positive
omegasome shrinks and disappears. Autophagosomes subsequently fuse with endosomes to
form amphisomes [6], where acidification starts. Amphisomes eventually fuse with lysosomes
to form autolysosomes [7], where the bulk of the cargo degradation occurs, and the metabolites
are then recycled through the autolysosomal membrane back to the cytoplasm.
Phagophores have also been demonstrated to nucleate from recycling endosomes and
subsequently make membrane contact sites (MCSs) with other organelles, mainly the ER,
in order to elongate [8-10]. Multiple other organelles have also been reported as membrane
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2.2. CLEM with Serial Block-Face-Imaging Scanning Electron Microscopy (SBEM)

After live-cell imaging, the cells were fixed again in 2.5% glutaraldehyde (Sigma,
G5882) in 0.1 M sodium cacodylate buffer (pH 7.4), supplemented with 2 mM CacCl,
and postfixed using double osmication prior to uranyl acetate en bloc staining and lead
aspartate treatment, as described previously [26]. The method was modified from [27].
Finally, the cells were dehydrated and embedded in resin (Fluka, Durcupan ACM) between
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cells were fixed in 4% paraformaldehyde in 0.2 M Hepes buffer (pH 7.4) for 10 min, perme-
abilized in 0.1% Triton X-100 in phosphate-buffered saline (PBS) (pH 7.4) for 10 min and
blocked with 1% bovine serum albumin at room temperature for 3 h. The cells were labeled
with mouse monoclonal anti-human transferrin receptor (TfR) (Invitrogen 136,800) at 1:200
dilution, or anti-ATG2B (Thermo Fisher 25155-1-AP) at 1:200 dilution, in 0.1% bovine serum
albumin in PBS at +4 C overnight. After washing in PBS, the cells were labeled with Alexa
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Figure 1. CLEM of an omegasome and a nascent phagophore/autophagosome. (A) HEK293 cells
expressing GFP-tagged DFCP1 were time-lapse imaged to trace omegasomes. After fixation, the
same cell and omegasome were imaged with electron tomography. (B) One slice of the tomogram
overlaid with the DFCP1 fluorescence. (C) The phagophore, ER, lysosomes and mitochondria were
traced to create a 3D model, using the color code shown in the top right corner of the figure. Panel
(C) shows one tomography slice overlayed with part of the 3D model. (D) The 3D model shows
the relationships of the phagophore, ER, mitochondria and lysosomes with each other. (E) The
DFCP1 fluorescence from live-cell imaging overlaid with the 3D model. Note that the DFCP1 local-
ization overlaps the ER in the 3D model. (F-H) Slices through the tomogram. Panels (F-H’) show
the boxed areas at higher magnification. (F,F’) The phagophore/autophagosome (green arrows)
has MCSs (red arrows in (F)) with the ER (yellow arrows) inside and outside of the phagophore.
(G,G’) The phagophore/autophagosome (green arrows) has MCSs with a lysosome (Ly). (H,H’) The
phagophore/autophagosome (green arrows) also has an MCS (white arrow in (H’)) with a mito-
chondrion (mi). In panels (D,E), ER, mitochondria and lysosomes are shown as volume rendered
according to their grey-level values. See also Supplementary Figure S1.
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To summarize, the ATG2A/B-deficient cells are able to form phagophore precur-
sors/small autophagosomes of approximately 200 nm in diameter in the regions rich in
cup-shaped 50-60 nm vesicles.

3.3. ATG13-Positive Phagophore Precursor Localizes in Proximity to ATG2 but Not TfR

ATG13 is a subunit of the ULK1 complex that initiates phagophore biogenesis by
translocating to the ER [4,36]. In order to visualize the earliest steps of phagophore biogen-
esis with correlative light-electron microscopy (CLEM), we used HEK?293 cells expressing
GFP-ATG13, which were used earlier to demonstrate that GFP-ATG13 puncta mark sites
of phagophore biogenesis [4]. In addition to the ER, recycling endosomes have also been
implicated in the nucleation or biogenesis of phagophores [8-10,37,38]. As stated above,
ATG2 localizes at the ER-phagophore MCSs, where it transfers lipids from the ER to the
expanding phagophore [
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Figure 4.
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Figures 3 and 4. Tomography of this punctum revealed an open slightly bent phagophore
(Figure 5E,E’,H) that showed MCSs with the ER at the edge of the cistern and with the
convex surface of the curved cistern (Figure 5E,E’,FF’). A bundle of filaments, likely actin
filaments, were located next to the phagophore (Figure 5F,F’,1,J).

Figure 5. CLEM of a phagophore. (A) HEK293 cells expressing GFP-tagged ATG13 were time-
lapse imaged to trace ATG13 puncta. The cells were fixed 4 min 45 s after the appearance of the
ATG13 punctum. After fixation, the same cell and punctum were imaged with electron tomography.
(B) One slice of the tomogram overlaid with the ATG13 fluorescence. (C-F) Tomography slices
showing the phagophore (green arrows), ER (yellow arrows), vesicles (purple arrows) and a bundle
of putative actin filaments (pink arrows). The white arrow in panel (C) indicates an MCS between a
mitochondrion (mi) and ER close to the phagophore. (G) Organelles in the tomogram were traced
with different colors, as indicated by the overlay, as well as the bottom right panel of the figure.
Panels (C’,E’,F’) show enlarged details from panels (C,E,F), respectively. The red arrows in panels
(E’,F’) indicate MCSs between the phagophore and ER. (H
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it can form additional MCSs with the ER and other organelles, which might correspond to
multiple lipid-transfer sites to the elongating phagophore.

4. Discussion
In this study, we visualized phagophore biogenesis in relation to the ER subdomain,
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observed 30-60 nm vesicles, many of them cup-shaped, next to the phagophore precursors
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