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CDS2 has a significant preference for C20:4 in the sn-2 position of PA, but CDS1 is less selective [16], although
it prefers unsaturated species of PA compared with fully saturated species [17]. CDS2 is ubiquitously expressed,
while CDS1 is restricted to a subset of tissues [16,18] and might be induced when a high rate of de novo PI
synthesis is required [19]. Furthermore, overexpressed CDS1 and CDS2 show slightly different patterns of local-
ization in the ER [17]. These observations suggest that the formation of CDP-DG from PA is likely to be a
regulated step and CDS1 and 2 have evolved to play differing roles, although definitive evidence for their
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pro-inflammatory phenotype may be related to defective processing of C20:4 by MBOAT7 rather than small
changes in PI species.

The first committed step in PI remodelling is its hydrolysis into LPI by PLAs, and thus coupling this process
to de novo PI synthesis might be envisaged to facilitate remodelling. Indeed, it has been suggested that the
faster remodelling of atypical PE and PS species produced de novo involves their selective degradation by PLAs
[41]. Similarly, PIs generated from exogenous C32:0 CDP-DG in liver microsomes were rapidly hydrolyzed
into LPI, while little LPI was formed from pre-existing PIs, suggesting a selective de-acylation of newly synthe-
sized PIs [42]. As yet, no PI-PLA activity selective for these intermediate species has been identified and the
roles of the PLA superfamily of enzymes in phospholipid remodelling are not clearly defined [43]. The inhib-
ition of Ca2+-independent phospholipase A2b (iPLA2b) reduces the incorporation of C20:4 into phospholipids
[44,45] while its overexpression increases the levels of C38:4 PI [46]. The analysis of brains from iPLA2b−/−
mice, however, suggest that it is not required for C38:4 enrichment [47]. DDHD1 seems to be the PLA1
involved in the generation of C20:4 LPI [48], an endogenous activating ligand of G protein-coupled receptor
GPR55 [49,50]. Although loss of the homologue of DDHD1 in C. elegans, IPLA-1, results in a dramatic change
in their predominant PI species, from C18:0/20:5 to 18:1/20:5 [29], in DDHD1−/− mice there were no changes
in C38:4 PIPn whilst there was a relative increase in 18:1/C20:4 PIPn at the expense of shorter and more
saturated species [51]. Regarding the products of PLA activity on PIs, C18:0 LPI shows the highest levels in
mouse tissues, with C20:4 LPI also being abundant in the nervous system [52]. However, this provides little
information about the kinetics of remodelling in sn-1 and sn-2 as these species can be formed as remodelling
intermediates but also from C38:4 PI for signalling purposes. Thus, if it is not reacylated, LPI can be meta-
bolized by lysophospholipases A, C or D to generate glycerophosphoinositol [53], monoacylglycerol [54] or
LPA [55], which will all have different signalling roles [56].
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(Figure 3; [63]). The activation of a PI(4,5)P2-selective PLC by receptors is now accepted to be a central signal
transduction mechanism in multicellular organisms and liberates the ‘second messengers’ IP3 and DG, which
stimulate intracellular Ca2+-release and the activation of PKC, respectively [64,65]. Whilst PIPn can be
interconverted by kinases and phosphomonoesterases, the action of a PLC produces DG, which is a common
biosynthetic intermediate in lipid metabolism. This creates a potential problem for cells in segregating
PLC-derived-DG from other sources of DG, enabling it to both act as a selective signal for the activation of PKC
and also as a source of PA for the PI-cycle. Furthermore, PLC activation is often observed to occur in parallel
with activation of a PLD which usually appears to be directed predominantly against PC, adding a further source
of complexity in segregating pools of PA (and DG via PA phosphatases) destined for different purposes [66].
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C32:0 species were used to derive the SF-1 crystals (Figure 4E). It has also been described that nuclear p53 can
bind PI(4,5)P2, which results in its stabilization [94]. This interaction was resistant to denaturation, and was
observed with natural PI(4,5)P2 but not with dioctanoyl-PI(4,5)P2.

Lessons from evolution
The synthesis of PI from CDP-DG and free inositol via PIS is conserved in all eukaryotes (reviewed in [95]),
which also present most of their phosphorylated forms [96]. While these PIPn participate in homologous
functions in different organisms, the PI enrichment in C38:4 backbones has only been observed thus far in
vertebrates. Therefore, tracing the emergence of C38:4 enrichment during the evolution of PIPn signalling
could provide some insights into the evolutionary pressures favouring a distinct and homogeneous acyl chain
composition in this key family of signalling lipids.

While C38:4 enrichment might be restricted to vertebrates, a common feature of PIPn across many different
organisms is the concentration of saturated acyl chains in sn-1 compared with other phospholipids [29,97,98].
In yeast, the enrichment in C16:0 or C18:0 in sn-1 appears to take place by distinct mechanisms; the PI
synthase Pis1p seems to select CDP-DG molecules containing C16:0 [99], while C18:0 chains are incorporated
via remodelling by the LPI acyltransferase Psi1p, their closest homologue to mammalian AGPAT8 [100]. Psi1Δ
yeast strains present an abnormal localization of PI4P and PI(4,5)P2 and alterations in vesicle trafficking and
cell polarity, which has been attributed to non-redundant functions of the PIPn pool containing C18:0 [101].
The main lysophospholipid sn-2 acyltransferase in yeast microsomes is Ale1p, an MBOAT family enzyme with
a strong preference for mono- and poly-unsaturated acyl-CoA chains, though the longer chain C20:4-CoA is a
poor substrate [102]. Studies investigating the substrate preferences of the mammalian MBOAT family suggest
some overlapping selectivity for the lyso-phospholipid head group and varying selectivity for acyl-CoA chain
length and degree of unsaturation [26], but MBOAT7 appears remarkably selective for both LPI and
C20:4-CoA [28]. Similar results are observed in vitro with homologues in nematode [27] and fly [103], though
C20:4 is absent from flies [104]. Therefore, during the evolution of PIPn signalling, two different families of
acyltransferases (AGPAT and MBOAT) have evolved to generate a pool of PIPn with a stearoyl chain in sn-1
and a polyunsaturated fatty acid in sn-2, which in vertebrates becomes C20:4. Remarkably, the social amoeba
Dictyostelium discoideum, which branched before the divergence of fungi and metazoa, also presents a unique
hydrocarbon backbone in PIPn, composed of an ether-linked C16:0 chain in sn-1 and a ester-linked C18:1
chain in sn-2 (C34:1e) [105]. Taken together, a theme emerges that suggests a core functional advantage to the
selected PI backbone, such as availability within the bilayer and/or IPn head-group presentation to effectors.
This advantage may be fine-tuned in individual organisms to the precise temperature and lipid composition of
the membranes in which they must act. Moreover, in some organisms, such as vertebrates and Dictyostelium,
there appears to have been further enrichment to more precise molecular species, which may imply additional
advantages, such as metabolic identity and optimal PIPn–protein interactions.

While the hydrolysis of PI(4,5)P2 by PLC seems to be ubiquitous in eukaryotes, the emergence of PLC sig-
nalling in metazoans might have increased the pressure for PIPn homeostatic mechanisms. In fly photoreceptor
cells, which present heterogeneous PIPn species and require the rapid replenishment of PI(4,5)P2 to sustain
their light-activated PLC signalling, an efficient PI cycle is organised by a specialized ER-PM contact site, the
Submicrovillar Cisternae, where PI is resynthesized using PA molecules transferred from the PM by RdgB
proteins (a homologue of mammalian Nir2) [68]. In mammals, the efficient operation of a PI cycle in different
cell types might be facilitated by an additional layer of selectivity provided by the C38:4 backbone (see
discussion above). This may be reflected in the divergence of C38:4-selective CDS2 and non-selective CDS1 in
vertebrates [106] and it would be informative to investigate whether other proteins involved in the mammalian
PI cycle, such as Nir2/3, have evolved selectivity for C38:4 substrates.

The presence of alternative PIPn species
Whilst the forgoing discussion has focussed on the enrichment of the C38:4 species of PIPn in primary mam-
malian tissue, several examples have been reported where this enrichment does not occur, or at least not to the
same extent [107
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same manner as C38:4 PIPn. In addition, the stimulation of the PI3K and PLC pathways in platelets indicated
that some minor PIPn species present different dynamics to the C38:4 PIPn pool [108].

Alternative PIPn species might also be enriched in certain cell compartments. The exosomes released by
prostate cancer cell line PC-3, showed a higher proportion of C34:1 and C36:1 species in PI compared with the
parental cells [110]. As PI levels were very low in exosomes, their unusual composition could indicate an exclu-
sion of polyunsaturated PI species during exosome formation. This lack of C38:4 enrichment in PIs has also
been observed in extracellular vesicles derived from other prostate cell lines [111] or differentiated 3T3-L1
adipocytes [112], although their levels were not compared with those of the parental cells. Similarly, PI in
lung surfactant showed a predominance of saturated/monounsaturated species, which could be related to its
biophysical functions [25,113].

A higher saturation degree in alternative PIPn species could render functional advantages, such as facilitating
their packing [3]. PIPn can aggregate in microdomains, as seen with clusters of synthasin-1A/PI(4,5)P2 control-
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• New insights should arise from the study of the metabolic dynamics of PIPn molecular
species and the inclusion of the acyl chain variable in functional and structural assays.
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AGPAT, acylglycerol-3-phosphate acyltransferase; CDP-DG, CDP-diacylglycerol; CDS, CDP-diacylglycerol
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