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Aging leads to epigenetic alterations, including changes
in DNA methylation, through both multiple distinct and
intersecting age-related mechanisms [6, 41]. Many DNA
methylation aging clocks have now been derived, and due
to their individual strengths and weaknesses, explicit refer-
ence must be made to the specific clock employed (see
further in “Challenge 2”). Captured age-related epigenetic
variation can be firstly split into intrinsic, or intra-cellular,
and extrinsic, or broadly within-tissue and external, as-
pects of the aging process [27]. The former is a surrogate
readout of multiple cellular and genomic processes, in-
cluding possible deterioration of mechanisms involved in
maintaining the epigenome, while the latter includes age-
related cell proportion changes within a tissue. While
these first clocks are markers capturing these effects to a
greater or lesser extent [42], both can predict all-cause
mortality at a population, but not individual level, even
after correcting for known risk factors [27]. To investigate
biological age more directly, clocks have also been trained
on age-related and disease phenotypes in combination
with chronological age, such as the “PhenoAge” DNA
methylation clock that incorporates nine age-related bio-
chemical measures [43]. Cigarette smoking, a significant
disease-related factor, is observed to strongly drive
mortality-associated predictive DNA methylation changes
[44]. However, these tobacco-related methylation changes
do not influence the Horvath or Hannum et al. clocks, but
are captured in “PhenoAge” [9]. Of note, a very recently
constructed mortality predictive DNA methylation clock,
termed “GrimAge,” directly incorporates smoking-related
changes through an estimate of “pack-years” smoking.
This clock also includes certain plasma protein levels esti-
mated by DNA methylation, and this leads to an even
stronger prediction of both lifespan and healthspan [45].

Current uncertainty
The first DNA methylation clocks devised were found to
be useful for estimating actual age, as well as capturing as-
sociations with biological aspects of aging. Data gathered
from these early clocks can still be exploited for both these
chronological and biological measures. However, now this
duality has been recognized, we can attempt to improve
our assessment of these two characteristics. Specialized
clocks are likely to be more powerful for accurate age pre-
diction or to capture specific biological aging-related func-
tional deterioration or disease-related predictions [45].
How far these two distinct uses can be separated into
discrete clocks and improved for their specific role is pres-
ently unknown. However, clearly if the DNA methylation
clock measurement of actual age was perfect, the loss of
any variability removes the window where biological aging
associations can be made [46]. Empirical calculations esti-
mate that near-perfect forensic age determination may be
possible with large enough sample size, even with current

DNA methylation array platforms (see Fig. 1a) [46], al-
though this statistically derived view that chronological
clocks can approach extreme precision is not held by all
in the field.

Each DNA methylation clock that is constructed is
unique to its method of calibration [47], indicating the
importance of tissue/s employed, number of samples,
and statistical methodology. Clearly, small sample sizes
are more susceptible to multiple aging-related con-
founders, measurement errors, and imperfect statistical
predictions. Even when clocks are directly trained on ac-
tual chronological age, the strong influence of age-
related biological processes may skew the CpGs selected
for the clock, underscoring the importance of an appro-
priate population of sample donors. Furthermore, as dis-
cussed in “Challenge 3,” Zhang et al. recently
highlighted the impact of not only sample size but also
cell type correction, in heterogeneous cell type-derived
DNA, on improving chronological age prediction [46].

For “Biological” clocks, another obvious area of uncer-
tainty is that there is not one measure or “gold standard”
of biological aging [6, 7, 41
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]. This phenomenon en-
compasses a wide range of age-associated changes from
the merely visible to disease-risk related. To understand
how aging may be characterized by chronological and bio-
logical age-related epigenetic changes, we need more de-
tailed understanding of what mechanisms may be
underlying these observations. There is no evidence that
the Horvath or Hannum et al. clock CpGs are enriched
for functionality over and above the promoter-focused ar-
rays from which they were constructed. Furthermore, the
clocks have shown variability in their ability to capture
measures of mitotic age, such as telomere length [9



[54–57]. Testing across the range of routinely collected
DNA samples will be needed, such as those gathered from
peripheral blood or buccal swabs, but also other sources
of DNA, such as hair root, skin, and other tissues. How-
ever, this is currently only likely to be tractable in data de-
rived from peripheral blood, as these are available at large
scale. For the other tissues, the approach is likely to be in-
sufficiently powered in the intermediate future. Specific
CpGs will be selected to construct clocks for high-
precision forensic age estimation, when chronological age
is not known or disputed. They will employ those CpGs
that are the most robust and accurate for particular tissues
and their constituent cell types [58]. We will need to de-
fine the influence of genetic variation and environmental
factors on these measures. Accumulating this knowledge

of the various DNA methylation clocks will guide their fu-
ture legal or forensic application [59].

The biological aging component captured by epigenetic
age acceleration consists of a large range of drivers, in-
cluding tissue-specific, cellular aging pathology, stochastic
deterioration, and disease-related factors. As mentioned,
there is no single measure of biological age; therefore, spe-



Tissue-specific clocks have the potential to be highly
clinically useful as prognostic and diagnostic markers of
disease, as discussed in the following “Challenge 2.”
However, we should not forget about the potentially in-
triguing insights into aging biology that could be identi-
fied by modifications that occur across all tissue types in
the body, or pan-tissue changes [62]. Strong outlier can-
didates for pan-tissue changes identified to date should be
further evaluated, such as DNA hypermethylation in
ELOVL2, as well as looking for novel aging-related chroma-
tin marks. To confirm any consistency of changes across
tissue types will ultimately require large-scale and detailed
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activity of many genes, although currently without
strong evidence of expression disruption [82]. Changes
with aging have been observed in both the binding sites of
the transcriptional repressor REST [83] and insulator CTCF
[84]. However, instead of targeting housekeeping or essen-
tial genes, epigenetic drift changes tend to occur in the per-
iphery of the protein-protein interactive network [85].

Current uncertainty
There is uncertainty around how the DNA methylation
changes observed in clocks can accrue without replication,
i.e., due to processes not related to cell replication (see
Table 1). Most tissues are comprised of non- or slowly
dividing cells, and different division rates occur in differ-
ent tissues. Aging-related aberration of the epigenetic ma-
chinery is implicated in DNA methylation change over
time. However, understanding this will require more de-
tailed characterization of the levels of instability aside
from DNA replication, and the extent to which this
process is cell-, genetic-sequence-, or cis regulatory
element-specific. Cumulative changes, as well as poten-
tially stochastic factors, most likely influence mitotic rate
and fidelity, repair, chromatin remodeling, and transcrip-
tion. These aggregating mechanisms are not exclusive to
each other and could be important in differing degrees at
different loci or in different cell types. The Horvath clock
is derived from a wide variety of tissue types and works



understanding patterns of DNA methylation heterogeneity
in aging stem cell populations [99] and for understanding
the relationship between age-associated patterns of DNA



the association with mortality lessened, even without cell
type correction, with increased training set size. The bio-



cardiovascular risk could combine genetic PRS for this
trait with GrimAge clock measures, which estimate car-
diovascular disease-related risk, such as smoking pack-
years, plasma beta-2 microglobulin, and other plasma pro-
teins, and predicts time to coronary heart disease [45].

Regarding the issue of cell type deconvolution for
clock association, this will be specific to the disease or
trait being examined. Single-cell analysis, as detailed in
“Challenge 5,” will also help pinpoint which cell type(s)
is the most important and guide the use of cell type cor-
rections in heterogeneous DNA samples for larger longi-
tudinal and epidemiological studies.

Another very important issue is that all these genetic







designing a custom array that could be used at very low
cost on very large numbers.

While the focus so far has been on DNA methylation,
other DNA modifications, as well as known and currently
unrecognized chromatin modifications, should be
explored and may reveal exciting clock-like properties.
Suggestively, the premature autosomal recessive aging
disorder, Werner syndrome, while showing DNA methy-
lation clock age acceleration [163], also has identified
significant heterochromatin changes [164]. The optimum
analysis of chromatin modifications requires fresh
samples, but epigenome-wide association studies have
been recently performed successfully with histone acetyl-
ation derived from post-mortem specimens [165]. These
data can also be further integrated with DNA modification
changes. Larger scale mass spectrometry quantitation of
histone modifications could also be evaluated. Additional
DNA modification analysis by oxidative BS-seq via array
for 5hmC [166] should be further evaluated in aging,
although this is still currently expensive to perform in
large numbers. However, new methodologies, such as a
non-destructive DNA deaminase [167], may help to
propel these on.

Repetitive elements, where currently technically pos-
sible, may be sites for identifying aging-associated DNA
modification in order to construct novel clocks, and
these loci are clearly under-represented by arrays pres-
ently (see Fig. 2h). In this exploration, smaller scale
whole-genome sequencing DNA methylome analyses
should not be deterred. Analyzing repetitive elements by
these methods is the only realistic option, and for the
longer repeats, third-generation direct long-read sequen-



Bulk analysis of isolated cell populations can still give



coverage of scBS-seq it will be possible to generate a
single-cell clock; this may also be aided by further meth-
odological or technical breakthroughs, including poten-
tially single-cell multi-omics measurements [188].
Furthermore, modulation by experimental models may
give further insight into the influence of particular sub-







acceptable to all stakeholders will require transparent
governance based on scientific accuracy, which will
require significantly more rigorous scientific evaluation.

Conclusion
With this perspective, we have detailed seven challenges
alongside the experiments and recommendations to ex-
plore these (summarized in Table 2), which we hope will
help to further the fascinating biological discoveries that
have accompanied DNA methylation clocks. These de-
tailed strengths, weaknesses, and areas of inquiry should
stimulate new discussion and experimentation.

The power of epigenomic analysis is clearly displayed
by these precise aging-related changes. Detailed evalu-
ation of DNA methylation clocks may reveal unique in-
sights into the aging process itself, as well as act as a
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