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Alterations in cerebral cortex connectivity lead to intellectual disability and in Down syndrome, this is associated
with a de �
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present at the onset of neurogenesis, as well as to the number of VZ
(apical) and SVZ (basal) proliferative and neurogenic divisions
(Huttner and Kosodo, 2005; Noctor et al., 2001, 2007 ).

Regulation of the cell cycle, and particularly of the G1 phase of the cell
cycle, is important for the normal expansion of the neocortex in both
rodents and primates ( Dehay and Kennedy, 2007). G1 is a critical phase,
integrating extracellular signals that induce either commitment to a
further round of cell division, or withdrawal from the cell cycle and
differentiation ( Cunningham and Roussel, 2001; Dehay and Kennedy,
2007; Salomoni and Calegari, 2010; Zetterberg et al., 1995 ). Pioneering
cumulative S-phase labelling experiments performed in the mouse em-
bryo showed that as neurogenesis progresses the cell cycle of neocortical
progenitors extends due to a progressive lengthening of the G1 phase
(Takahashi et al., 1995). Moreover, there is evidence of a correlation
between cell cycle length and neurogenesis, which has led to the formu-
lation of the cell cycle length hypothesis ( Gotz and Huttner, 2005 ).
According to this hypothesis, the time that a progenitor spends in G1
determines the � nal effect of a particular cell fate determinant, which
could be equivalent (symmetric divisions) or distinct (asymmetric
divisions) in the two daughter cells ( Dehay and Kennedy, 2007; Gotz
and Huttner, 2005; Salomoni and Calegari, 2010 ). Indeed, it was more
recently shown that manipulating the duration of the G1 phase in neocor-





Polyclonal HA antibody conjugated to agarose beads was from Santa
Cruz. Secondary antibodies for infrared � uorescent detection were
goat anti-mouse IgG IRDye-800CW and goat anti-rabbit IgG IRDye-
680CW, and for chemiluminescence detection were rabbit anti-mouse
and goat anti-rabbit IgG conjugated to horseradish peroxidase
(1:2000; Dako).

2.7. RNA Extraction and Real-time qPCR

Total RNA from the telencephalon of E10.5 and E11.5 embryos were
extracted using the RNeasy Mini kit (Qiagen) according to
manufacturer's instructions and the eluted RNA treated with DNAse





DYRK1A have longer S phases than wild-type progenitors (Supplemen-
tary Fig. 4D). The increase in S phase duration calculated in this experi-
ment (28% increase with respect to the wild-types) was similar to the
increase calculated by assessing the accumulation of EdU (35%; Fig. 2E).
However, we did � nd signi � cant differences between the Ts values calcu-
lated in the two experiments ( Fig. 2E and Supplementary Fig. 4D). This
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Therefore, to estimate RG-derived IP production at this developmental
stage, we counted the Tbr2 + cells that did not express the neuronal
marker Tuj1 (arrows in Fig. 3D). The cell counts showed that Tg Dyrk1a
embryos had more IPs than the wild-types ( Fig. 3D). Together, these
observations suggest that the de � cit of early-born cortical neurons in
the transgenic condition may result from an increased proportion of
RG proliferative divisions at the expense of the neurogenic divisions
(Fig. 3E). As progenitors undergoing proliferative divisions have longer
S phases than the ones undergoing neurogenic divisions ( Arai et al.,
2011), the bias observed in the division mode of Tg Dyrk1a RG progeni-
tors was consistent with the increased duration of the S phase in these
progenitors (Fig. 2E and Supplementary Fig. 4).

If DYRK1A-induced degradation of Cyclin D1 is the mechanisms by
which this kinase regulates G1 phase duration in RG progenitors and
hence the fate of their daughter cells, lowering DYRK1A protein levels
in these progenitors should also modify the proportion of neurons and
IPs they produce. To test this prediction we did the same quanti � cations
in embryos heterozygous for a Dyrk1a null mutation ( Dyrk1a+/ −

embryos) ( Fotaki et al., 2002). The levels of DYRK1A protein in the tel-
encephalon of E11.5 Dyrk1a+/ − embryos were reduced (around 50%)
with respect to the levels in the Dyrk1a+/+ control littermates. Impor-
tantly, the levels of nuclear Cyclin D1 in Dyrk1a+/ − dorsal RG progeni-
tors were signi � cantly increased (Supplementary Fig. 5B and C). As in
the TgDyrk1a gain-of-function model, there were no differences
between genotypes in the number of RG progenitors (Pax6 + cells in the
VZ; Fig. 4A). However, Dyrk1a+/ − embryos had more Tbr1-expressing
neurons than Dyrk1a+/+ embryos ( Fig. 4B). We could not detect any
IP cells (Tbr2+ , Tuj1− cells) in E11.5 Dyrk1a+/ − embryos ( Fig. 4C),
indicating that IP production is impaired in this Dyrk1a mutant. To
con� rm this, we counted the number of Tbr2 + cells in Dyrk1a+/+ and
Dyrk1a+/ − embryos two days later (at E13.5), an age where the germinal
SVZ is well formed. The number of these cells was reduced in the VZ of
Dyrk1a+/ − embryos ( Fig. 4D), showing that indeed mutant RG progeni-
tors produce fewer IPs than the controls. Accordingly, Dyrk1a+/- mutants


embryos at E13.5 and E16.5 (Fig. 5C), indicating that during
neurogenesis the number of RG divisions was not altered in Dyrk1a
transgenic embryos. Accordingly, there were no differences between
genotypes in the numbers of RG progenitors during neurogenesis
(Pax6+ cells in a 100 μm-wide column were: wild-type, 127.11 ±
7.56; TgDyrk1a, 133.83 ± 6.23 at E13.5 and wild-type, 72.61 ± 3.98;
TgDyrk1a, 80.53 ± 5.91 at E16.5). However, the number of pH3 + cells
in the SVZ (basal mitosis) was signi � cantly increased in E13.5 TgDyrk1a
embryos, which correlated with the increased number of IPs in the SVZ
observed at this stage ( Fig. 5C).

As neurogenesis proceeds, IPs become the main source of neocortical
neurons ( Kowalczyk et al., 2009 ; and Fig. 5A). To evaluate how the



birthdate data shown in Supplementary Fig. 7C, suggests that Ctip2 neu-
rons in the Dyrk1a embryos are produced earlier in development but at
normal rates. In summary, our results show that a 1.5-fold increase in
DYRK1A protein levels disturbs the number of neocortical neurons
that are generated through development by direct and indirect
neurogenesis.

As neurogenesis progresses and the length of the G1 phase increases,
the levels of Cyclin D1 in dorsal VZ cel ls progressively de crease, and by the
end of the neurogenic phase, by E18.5, Cyclin D1 immunolabelling in the
ventricular proliferative region was very faint (Supplementary Fig. 8A).
Similar to the situation at the onset of neurogenesis ( Fig. 1B and C), the
levels of nuclear Cyclin D1 inversely correlated to the levels of DYRK1A
in E13.5 embryos (Supplementary Figs. 6 and 8B). In contrast and despite
DYRK1A being still present in the VZ of E16.5 embryos (Supplementary
Fig. 6), the levels of nuclear Cyclin D1 in Tg Dyrk1a VZ progenitors were
normal (Supplementary Figs. 6A and 8C). Consistent with published
data (Glickstein et al., 2009 ), we only detected a few cells expressing
high Cyclin D1 levels in the SVZ. Therefore, our expression data and
the phenotype of Tg Dyrk1a transgenic embryos indicate that the altered
production of upper layer neurons o bserved in these embryos does not
result from the regulatory action of DYRK1A on Cyclin D1 degradation.
The generation of macroglial cells in the mouse dorsal telencephalon
begins around birth when VZ progenitors lose their capacity to generate
neurons and become gliogenic ( Kriegstein and Alvarez-Buylla, 2009 ).
Immunolabelling for Cyclin D1 revealed the presence of a population
of cells expressing high levels of the protein in the region above the
SVZ, the intermediate zone, of E16.5 TgDyrk1a



Fig. 6. The TgDyrk1a model shows an advanced production of oligodendrocyte progenitors and decreased neuronal cellularity in speci � c cortical layers. (A) Representative coronal sections
from E16.5 wild-type (WT) and Tg Dyrk1a (Tg) brains immunostained for Olig2 and nuclei labelled with Hoescht. Yellow dashed rectangles indicate the region magni � ed in the images on
the right. Histogram shows the number of Olig2 + cells in a 300 μm-wide column of the cortical wall. (B) Representative coronal sections from P7 WT and Tg brains immunostained for Tbr1
(left), Ctip2 (middle) or Cux1 (right), and histograms showing the number of layer VI Tbr1 + neurons, layer V Ctip2 + neurons and layers II …IV Cux1+ neurons in a 100 μ
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the end of neurogenesis, and at P7, when radial migration has ended
and projection neurons are in their � nal layer position ( Miller, 1988 ).
At these developmental stages, Tbr1 expression in the neocortex is al-
most restricted to layer VI neurons ( Bulfone et al., 1995 ), which are
mainly generated between E11.5 and E13.5 ( Molyneaux et al., 2007 ).
According to the neuron de � cit observed in Tg Dyrk1a embryos during
this period ( Figs. 3B and 5D), the number of layer VI Tbr1 + neurons in



TgDyrk1a and Dyrk1a+/ − mouse models, this defect leads to an altered
number of projection neurons in the most internal layer of the
neocortex.

The in vivo



We show here that IPs express DYRK1A and that at late corticogenesis
the pool size of this type of progenitor is signi � cantly diminished in
TgDyrk1a embryos. Consistent with our Cyclin D1 expression data, it has
been shown that cortical IPs do not express Cyclin D1 but instead express
Cyclin D2 ( Glickstein et al., 2009 ). Thus, the early exhaustion of IPs in
TgDyrk1a embryos and the consequent de � cit of late-born neurons
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