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FcγRIIb differentially regulates pre-immune and
germinal center B cell tolerance in mouse and
human
Marion Espéli1,2, Rachael Bashford-Rogers1,3, John M. Sowerby1,4, Nagham Alouche2, Limy Wong1,

Alice E. Denton1,5, Michelle A. Linterman 1,5 & Kenneth G.C. Smith

Several tolerance checkpoints exist throughout B cell development to control autoreactive B

cells and prevent the generation of pathogenic autoantibodies. FcγRIIb is an Fc receptor that

inhibits B cell activation and, if defective, is associated with autoimmune disease, yet its

impact on specific B cell tolerance checkpoints is unknown. Here we show that reduced

expression of FcγRIIb enhances the deletion and anergy of autoreactive immature B cells, but

in contrast promotes autoreactive B cell expansion in the germinal center and serum auto-

antibody production, even in response to exogenous, non-self antigens. Our data thus show

that FcγRIIb has opposing effects on pre-immune and post-immune tolerance checkpoints,

and suggest that B cell tolerance requires the control of bystander germinal center B cells

with low or no affinity for the immunizing antigen.
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expression was associated with more stringent counter-selection
of HEL-specific B cells at all stages from transitional T1 to mature
follicular and MZ B cells when compared with WT controls
(Fig. 2b–g). Supporting this observation, B cell-specific over-
expression of FcγRIIb was associated with increased frequency of
HEL-specific B cells in mHEL mice reconstituted with SWHEL-
FcγRIIb BTG BM cells compared with KO, and in some popu-
lations WT, groups, consistent with reduced tolerance at the
transitional T2/T3 (Fig. 2d) and mature follicular (Fig. 2e, f) B-
cell stages. Low but detectable levels of anti-HEL IgG1 were seen
in sera of unimmunised mHEL mice reconstituted with BM from
all SWHEL mice (Supplementary Fig. 1d). This observation makes
it possible that the effect of FcγRIIb on selection at this stage
might be driven by co-cross-linking of the BCR and FcγRIIb with
cognate antibody, although we cannot exclude an effect of

FcγRIIb on tonic BCR signalling independently of antigen
recognition and of FcγRIIb co-crosslinking46,47.

To confirm the role of FcγRIIb in clonal deletion at these
central and peripheral tolerance checkpoints, we crossed the
SWHEL-Fcγ
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of or reduced FcγRIIb expression enhances clonal deletion at the
central and transitional B-cell peripheral tolerance checkpoints,
raising the question of how FcγRIIb deficiency leads to
autoimmunity.

FcγRIIb limits autoreactive B-cell anergy. We therefore tested
whether FcγRIIb expression controls B-cell anergy10,13,45 in

addition to clonal deletion. We measured anergy by ex vivo cross-
linking of the BCR and analysis of the phosphorylation of
a downstream kinase, normally reduced in anergic B cells. The

www.nature.com/naturecommunications


mHEL mice reconstituted with SWHEL-FcγRIIb-WT BM, con-
sistent with increased anergy among the remaining HEL+ B cells
that have avoided deletion (Fig. 3a, b). This ratio was further
reduced to 0.5 for mice reconstituted with SWHEL-FcγRIIb-KO
BM, demonstrating reduced phosphorylation of Syk upon BCR
engagement on HEL-autoreactive B cells in absence of FcγRIIb,
and conversely was around 1.5 for mHEL mice reconstituted with
SWHEL- FcγRIIb-BTG BM (Fig. 3a, b). Moreover, autoreactive
HEL+ B cells proliferated less than HEL− B cells in response to
LPS as shown by reduced CFSE dilution (Fig. 3c, d), and this
reduced proliferation was more marked in the absence of
Fcγ
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generation of autoreactive cells arising as bystanders in a GC
reaction to non-self antigens.

We then asked whether, in the absence of FcγRIIb expression,
autoreactive bystander B cells could expand in the GC in response
to exogenous antigen and generate autoantibodies. We crossed the
mHEL strain to the Rag2−/− background (ensuring all B cells were
of BM donor origin, allowing precise quantification of rare HEL-
specific GC B cells and serum HEL-specifi
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similar experiments with the SWHEL-FcγRIIbwild/H1 KI mice
containing naturally occurring promoter Fcgr2b variations
(Supplementary Fig. 6a). We had shown previously that these
mice displayed subtly reduced FcγRIIb expression on pre-B,
immature and GC B cells, suggesting these natural Fcgr2b
polymorphisms may impact upon both pre-immune and GC
tolerance44. The results followed the same trend as those

generated using SWHEL-FcγRIIb KO chimeras. There was
enhanced tolerance at the pre-immune checkpoints (reduced
frequency of HEL-specific autoreactive B cells in the BM and
spleen of SWHEL-FcγRIIbwild/H1 KI/mHEL mice compared with
control (Supplementary Fig. 6b, c). Despite this, in the SWHEL-
FcγRIIbwild/H1 KI chimeric mice immunised with SRBC, the total
number of HEL-speci
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specific GC B cells to total splenic B cells were increased
(Supplementary Fig. 6d, e). A non-significant trend towards
increased serum HEL-specific autoantibodies in mice reconsti-
tuted with SWHEL-FcγRIIbwild/H1 KI BM was also observed
(Supplementary Fig. 6f). In summary, a naturally occurring
genetic variant reducing the FcγRIIb increase that follows B-cell
activation can drive the expansion of autoreactive B cells in the
GC, despite enhanced pre-immune tolerance and even in
response to an irrelevant exogenous antigen.

FcγRIIB limits VH4-34 gene usage in humans. We then asked
whether FcγRIIB had a similar impact on tolerance checkpoints
in humans. We used the National Institute of Health Research
(NIHR) Cambridge BioResource to recruit 29 healthy volunteers:
19 volunteers homozygous for isoleucine at position 232 in
FCGR2B (hereafter referred to as I232 individuals), the common
variant associated with normal FcγRIIB function, and 10 volun-
teers homozygous for the SLE-associated single-nucleotide poly-
morphism in FCGR2B (hereafter referred to T232 individuals)
encoding a receptor that has markedly reduced inhibitory
function21,22. We flow-sorted peripheral blood CD19+IgD+

CD27− naive/transitional B cells; CD19+IgD−CD27−CD38mid/hi

activated B cells; CD19+IgD+CD27+ B cells that include mar-
ginal zone B cells, and perhaps B1-like and unswitched memory
cells48–51; CD19+IgD−CD27+CD38low/mid memory B cells; and
CD19+IgD−CD27+CD38hi plasmablasts (Supplementary Fig. 7).
The BCR repertoire for each of these subsets was analysed by
high-throughput sequencing using a method that can distinguish
between isotype classes (Supplementary Fig. 8 and 52), generating
an average of 20,573 BCR sequences per B-cell subset (Supple-
mentary Table 1).

No significant differences in the proportion of B cells within
each B-cell subset, nor of isotype usage, was seen between
genotypes (Supplementary Figs. 9 and 10). The effect of FcγRIIB
on tolerance was evaluated by examining the frequency of cells
expressing the IgHV4-34 gene. This specific heavy chain has been
shown to bind red blood cell antigens53,54 as well as commensal
bacteria55, and was significantly enriched in SLE patients (Fig. 7a)
in agreement with previous studies56,57. Moreover, IgHV4-34 was
enriched among BCRs without sequence evidence of switching or
SHM (comprising predominantly naive B cells), as well as
antigen-experienced BCRs as evidenced by isotype switching or
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In both major pre-immune tolerance checkpoints, at the BM
immature B-cell stage and at the transitional B-cell stage in the
spleen, no or low-FcγRIIb expression was associated with more
stringent tolerance, with increased deletion and anergy of HEL-
specific autoreactive B cells. In contrast, such reduced FcγRIIb
expression was associated with the increased production of
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Fig. 5 The impact of FcγRIIb on GC tolerance is also observed with a soluble autoantigen. a Wild type and sHEL recipients (both CD45.2) were irradiated
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function variant in FCGR2B. The proportion of IGHV4-34 clones,
known to be autoreactive, was significantly higher in the activated
CD19+IgD−CD27−CD38mid/hi and CD19+IgD+CD27+ B-cell
subsets in individuals homozygous for the FCGR2B T232 loss-of-
function SLE-associated polymorphism. This is consistent with a
relative impairment of post-immune tolerance in people with
reduced FcγRIIB function, as was seen in mice. Mouse and
human results were not fully concordant (there was, for example,
no evidence in humans of increased pre-immune tolerance
associated with reduced FcγRIIb function, at least as this is
refl
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cDNA was cleaned-up with Agencourt AMPure XP beads and PCR amplified with
V-gene multiplex primer mix (10 μM each forward primer) and 3′ universal reverse
primer (10 μM) using KAPA protocol and the thermal cycling conditions: 1 cycle
(95 °C—5 min); 5 cycles (98 °C—5 s; 72 °C—2 min); 5 cycles (65 °C—10 s, 72 °C—
2 min); 25 cycles (98 °C—20 s, 60 °C— 1 min, 72 °C—2 min) and 1 step (72 °C—10
min). Primers are provided in Supplementary Table 3.

IgH sequencing and analysis. MiSeq libraries were prepared using Illumina
protocols and sequenced using 300 bp paired-ended MiSeq (Illumina). Raw MiSeq
reads were filtered for base quality (median Phred score > 32) using QUASR
(http://sourceforge.net/projects/quasr/)68. MiSeq forward and reverse reads were
merged together if they contained identical overlapping regions of >50 bp, or
otherwise discarded. Universal barcoded regions were identified in reads and
orientated to read from V-primer to constant region primer. The barcoded region
within each primer was identified and checked for conserved bases (i.e. the T’s in
NNNNTNNNNTNNNNT). Primers and constant regions were trimmed from
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