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clock in humans was developed by Steve Horvath in
2013 [8







respectively. Finally, fragile X syndrome (FXS) shows a
positive EAA trend (median EAAwith CCC = + 2.44 years,
median EAAwithout CCC = + 2.88 years) that does not
reach significance in our screen (p valuecorrected, with

CCC = 0.0680, p valuecorrected, without CCC = 0.0693).
Next, we tested the effect of changing the median age

used to build the healthy control model (i.e., the median
age of the controls) on the screening results
(Additional file 1: Figure S2A). Sotos syndrome is robust
to these changes, whilst Rett, Kabuki, and FXS are much
more sensitive to the control model used. This again
highlights the importance of choosing an appropriate







in areas with lower levels of H3K36me3 when compared
with the control sets (Fig. 3d, see Additional file 1:
Figure S3B for a comprehensive comparison of all the
DMPs subsets). Moreover, hypomethylated aDMPs and
hypomethylated Sotos DMPs were both generally
enriched or depleted for the same histone marks in the
blood (Additional file 1: Figure S3B), which adds weight
to the hypothesis that they share the same genomic
context and could become hypomethylated through
similar molecular mechanisms.

Intriguingly, we also identified a subset of DMPs (2550)
that were hypermethylated during aging and hypomethy-
lated in Sotos (Fig. 3a). These “Hyper-Hypo DMPs” seem
to be enriched for categories such as “bivalent promoter”
and ‘repressed polycomb’ (Additional file 1: Figure S3A),
which are normally associated with developmental genes
[49, 50]. These categories are also a defining characteristic
of the hypermethylated aDMPs, highlighting that even
though the direction of the DNA methylation changes is
different in some aging and Sotos DMPs, the genomic
context in which they happen is shared.

Finally, we looked at the DNA methylation patterns in
the 353 Horvath’s epigenetic clock CpG sites for the
Sotos samples. For each clock CpG site, we modeled the
changes of DNA methylation during the lifespan in the
healthy control individuals and then calculated the
deviations from these patterns for the Sotos samples
(Additional file 1



when the comparison was performed inside the batch
that contained the Sotos samples (GSE74432), therefore
providing evidence that it is not confounded by batch
effect (p value = 0.73, Additional file 1: Figure S4E).

When we considered only the 353 clock CpG sites for
the entropy calculations, the picture was different. Shan-
non entropy for the 353 clock sites slightly decreased
with age in the controls when we included all the
batches, showing the opposite direction when compared
with the genome-wide entropy (Spearman correlation
coefficient = − 0.1223, p value = 3.8166 × 10−5, Fig. 4c).



genome as a whole, something that to our knowledge
has not been reported before.

Discussion
The epigenetic aging clock has emerged as the most ac-
curate biomarker of the aging process, and it seems to
be a conserved property in mammalian genomes [5, 6].
However, we do not know yet whether the age-related
DNA methylation changes measured are functional at all
or whether they are related to some fundamental process
of the biology of aging. Developmental disorders in
humans represent an interesting framework to look at
the biological effects of mutations in genes that are fun-
damental for the integrity of the epigenetic landscape
and other core processes, such as growth or neurodeve-
lopment [30, 31]. Furthermore, according to the epigen-
etic clock theory of aging, epigenetic clocks provide a
continuous readout that connects purposeful processes
in development with adverse effects in later life [5].
Therefore, using a reverse genetics approach, we aimed
to identify the genes that disrupt the aspects of the
behavior of the epigenetic aging clock in humans.

Most of the studies have looked at the epigenetic aging
clock using Horvath’s model [8], which has a ready-to-
use online calculator for epigenetic age [51]. This has
clearly simplified the computational process and helped
a lot of research groups to test the behavior of the epi-
genetic clock in their system of interest. However, this
has also led to the treatment of the epigenetic clock as a
“black-box”, without a critical assessment of the statis-
tical methodology behind it. Therefore, we decided to
benchmark the main steps involved when estimating epi-
genetic age acceleration (pre-processing of the raw data
from methylation arrays and cell composition deconvo-
lution algorithms), to quantify the effects of technical
variation on the epigenetic clock predictions and to
assess the impact of the control age distribution on the
epigenetic age acceleration calculations. Previous at-
tempts to account for technical variation have used the
first 5 principal components (PCs) estimated directly
from the DNA methylation data [23]. However, this
approach potentially removes meaningful biological vari-
ation. For the first time, we have shown that it is pos-
sible to use the control probes from the 450K array to
readily correct for batch effects in the context of the
epigenetic clock, which reduces the error associated with
the predictions and decreases the likelihood of reporting
a false positive. Furthermore, we have confirmed the
suspicion that Horvath’s model underestimates epigen-
etic age for older ages [36, 37] and assessed the impact
of this bias in the screen for epigenetic age acceleration.

The results from our screen strongly suggest that
Sotos syndrome accelerates epigenetic aging, and this ef-
fect was confirmed using other epigenetic clocks. Sotos

syndrome is caused by loss-of-function mutations in the
NSD1 gene [43, 44], which encodes a histone H3 lysine





gene bodies. However, the “Hypo-Hypo DMPs” were de-
pleted for H3K36me3, active transcription, and gene



epigenetic clock and lifespan in mice will provide deeper
mechanistic insights.

Conclusions
The epigenetic aging clock has created a new methodo-
logical paradigm to study the aging process in humans.
However, the molecular mechanisms that control its
ticking rate are still mysterious. In this study, by looking
at patients with developmental disorders, we have dem-
onstrated that Sotos syndrome accelerates epigenetic
aging and uncovered a potential role of the H3K36
methylation machinery as a key component of the
epigenetic maintenance system in humans. We hope that
this research will shed some light on the different pro-
cesses that erode the human epigenetic landscape during
aging and provide a new hypothesis about the mecha-
nisms behind the epigenetic aging clock.

Methods
Sample collection and annotation
We collected DNA methylation data generated with the
Illumina Infinium HumanMethylation450 BeadChip
(450K array) from human blood. In the case of the de-
velopmental disorder samples, we combined public data
with the data generated in-house for other clinical
studies (Table 1, Additional file 2) [31]. We took all the
data for developmental disorders that we could find in
order to perform unbiased screening. The healthy
samples used to build the control were mainly obtained
from public sources (Additional file 3). Basic metadata
(including the chronological age) was also stored. All the
mutations in the developmental disorder samples were
manually curated using Variant Effect Predictor [81] in
the GRCh37 (hg19) human genome assembly. Those
samples with a variant of unknown significance that had
the characteristic DNA methylation signature of the dis-
ease were also included (they are labelled as “YES_pre-
dicted” in Additional file 2). In the case of fragile X
syndrome (FXS), only male samples with full mutation
(> 200 repeats) [80] were included in the final screen. As
a consequence, only the samples with a clear molecular
and clinical diagnosis were kept for the final screen.

Pre-processing, QC, and filtering the data for the
epigenetic clock calculations
Raw DNA methylation array data (IDAT files) were
processed using the minfi R package [82]. Raw data were
background-corrected using noob [83] before calculating
the beta values. In the case of the beta values which are
input to Horvath’s model, we observed that background
correction did not have a major impact in the final
predictions of epigenetic age acceleration in the control
as long as we corrected for batch effects (Fig. 1c,
Additional file 1: Figure S5A). We decided to keep the

noob
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correction, probe filtering, BMIQ normalization), leads
to the best cell type proportions estimates, i.e., those that
minimize the deviations between our estimates and the
real cell type composition of the samples in the gold
standard dataset (Additional file 1: Figure S5B,
Additional file 4). We used the epidish function from the
EpiDISH R package [91] for these purposes.

Calculating the epigenetic age acceleration and
performing the main screen
Only those developmental disorders for which we had at
least 5 samples, with 2 of them with an age ≥ 20 years,
were included in the main screen (N = 367). Healthy
samples that matched the age range of those disorders
(0–55 years, N = 1128) were used to train the following
linear models (the control models):

(I) Without cell composition correction (CCC):

DNAmAge � Age þ Sex þ PC1 þ PC2 þ…þ PCN

(II) With cell composition correction (CCC):

DNAmAge � Age þ Sex þ Gran þ CD4T þ CD8T
þ B þ Mono þ NK þ PC1 þ PC2 þ…
þ PCN

where DNAmAge is the epigenetic age calculated using
Horvath’s model [8], Age is the chronological age, PCN
is the Nth technical PC obtained from the control
probes (N = 17 was the optimal, Fig. 1c) and Gran,
CD4T, CD8T, B, Mono, and NK are the different propor-
tions of the blood cell types as estimated with our de-
convolution strategy. The linear models were fitted in R
with the lm function, which uses least-squares.

The residuals from a control model represent the epi-
genetic age acceleration (EAA) for the different healthy
samples, which should be centered around zero after
batch effect correction (Additional file 1: Figure S1E,
Fig. 1d). Then, the median absolute error (MAE) can be
calculated as (Fig. 1c, Additional file 1: Figure S5A):

(III) MAE = median(abs(EAAi))

where EAAi is the epigenetic age acceleration for a
healthy sample from the control.

Once the control models are established, we can calcu-
late the EAA for the different samples with a develop-
mental disorder (cases) by taking the difference between
the epigenetic age (DNAmAge) for the case sample and
the predicted value from the corresponding control

model (with or without cell composition correction).
Finally, the distributions of the EAA for the different
developmental disorders were compared against the
EAA distribution for the healthy controls using a two-
sided Wilcoxon’s test. p



It is worth mentioning that we observed a remarkable
effect of the batch on the Shannon entropy calculations,
which generated high entropy variability for a given age
(Additional file 1: Figure S4C,D). Thus, accounting for
technical variation becomes crucial when assessing this
type of data, even after background correction, probe
filtering, and BMIQ normalization.

Identifying differentially methylated positions
DMPs were identified using a modified version of the
dmpFinder function in the minfi R package [82], where we
accounted for other covariates. The aging DMPs (aDMPs)
were calculated using the control samples that were in-
cluded in the screen (age range 0–55 years, N = 1128) and
the following linear model (p values and regression coeffi-
cients were extracted for the Age covariate):

(VII) βi~Age + Sex + Gran + CD4T + CD8T + B +
Mono + NK + PC1 + … + PC17

where βi represents the methylation beta value for the
ith probe (CpG site) in the array.

The Sotos DMPs were calculated by comparing the Sotos
samples (N = 20) against the control samples (N = 51) from
the same dataset (GSE74432) [44] using the following linear
model (p values and regression coefficients were extracted
for the Disease_status covariate):

(VIII) βi~Disease _ status + Age + Sex + Gran + CD4T +
CD8T + B + Mono + NK + PC1 + … + PC17

We selected as our final DMPs those CpG probes that
survived our analysis after Bonferroni multiple testing
correction with a significance level of α = 0.01.

(Epi) genomic annotation of the CpG sites
Different (epi) genomic features were extracted for the
CpG sites of interest. All the data were mapped to the
hg19 assembly of the human genome.

The continuous features were calculated by extracting
the mean value in a window of ± 200 bp from the CpG
site coordinate using the pyBigWig package [94]. We
chose this window value based on the methylation
correlation observed between neighboring CpG sites in
previous studies [95]. The continuous features included
(Additional file 5) the following:

– ChIP-seq data from ENCODE (histone
modifications from peripheral blood mononuclear
cells or PBMC; EZH2, as a marker of polycomb
repressing complex 2 binding, from B cells; RNF2,
as a marker of polycomb repressing complex 1

binding, from the K562 cell line). We obtained Z-
scores (using the scale function in R) for the values
of “fold change over control” as calculated in
ENCODE [96]. When needed, biological replicates
of the same feature were aggregated by taking the
mean of the Z-scores in order to obtain the
“normalised fold change” (NFC).

– ChIP-seq data for LaminB1 (GSM1289416,
quantified as “normalised read counts” or NRC) and
Repli-seq data for replication timing (GSM923447,
quantified as “wavelet-transformed signals” or WTS).
We used the same data from the IMR90 cell line as
in [97].

– Total RNA-seq data (rRNA depleted, from PBMC)



syndrome, a background set containing all 428,266 probes
that passed our pre-processing pipeline (450K) was used.

The distributions of the scores from the continuous
features were compared using a two-sided Wilcoxon’s
test. In the case of the categorical features, we tested for
enrichment using Fisher’s exact test.

Differences in the clock CpGs beta values for Sotos
syndrome
To compare the beta values of the Horvath clock CpG
sites between our healthy samples and Sotos samples,
we fitted the following linear models in the healthy sam-
ples (control CpG models, Additional file 1: Figure S3C,
Additional file 6):

(X) βi~Age + Age2 + Sex + Gran + CD4T + CD8T + B +
Mono + NK + PC1 + … + PC17

where βi represents the methylation beta values for the
i
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