小猪视频

 

Filter

Publications

The 小猪视频 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Joffrin AM, Saunders AM, Barneda D, Flemington V, Thompson AL, Sanganee HJ, Conway SJ Signalling

Synthetic phosphatidylinositol phosphate (PtdIns ) derivatives play a pivotal role in broadening our understanding of PtdIns metabolism. However, the development of such tools is reliant on efficient enantioselective and regioselective synthetic strategies. Here we report the development of a divergent synthetic route applicable to the synthesis of deuterated PtdIns4 and PtdIns5 derivatives. The synthetic strategy developed involves a key enzymatic desymmetrisation step using Lipozyme TL-IM庐. In addition, we optimised the large-scale synthesis of deuterated -inositol, allowing for the preparation of a series of saturated and unsaturated deuterated PtdIns4 and PtdIns5 derivatives. Experiments in MCF7 cells demonstrated that these deuterated probes enable quantification of the corresponding endogenous phospholipids in a cellular setting. Overall, these deuterated probes will be powerful tools to help improve our understanding of the role played by PtdIns in physiology and disease.

+view abstract Chemical science, PMID: 34820112

Open Access
Adamowski M, Wo艂odko K, Oliveira J, Castillo-Fernandez J, Murta D, Kelsey G, Galv茫o AM Epigenetics

Obesity leads to ovarian dysfunction and the establishment of local leptin resistance. The aim of our study was to characterize the levels of NOD-like receptor protein 3 (NLRP3) inflammasome activation in ovaries and liver of mice during obesity progression. Furthermore, we tested the putative role of leptin on NLRP3 regulation in those organs. C57BL/6J female mice were treated with equine chorionic gonadotropin (eCG) or human chorionic gonadotropin (hCG) for estrous cycle synchronization and ovary collection. In diet-induced obesity (DIO) protocol, mice were fed chow diet (CD) or high-fat diet (HFD) for 4 or 16 weeks, whereas in the hyperleptinemic model (LEPT), mice were injected with leptin for 16 days (16 L) or saline (16 C). Finally, the genetic obese leptin-deficient (+/? and -/-) mice were fed CD for 4 week. Either ovaries and liver were collected, as well as cumulus cells (CCs) after superovulation from DIO and LEPT. The estrus cycle synchronization protocol showed increased protein levels of NLRP3 and interleukin (IL)-18 in diestrus, with this stage used for further sample collections. In DIO, protein expression of NLRP3 inflammasome components was increased in 4 week HFD, but decreased in 16 week HFD. Moreover, NLRP3 and IL-1尾 were upregulated in 16 L and downregulated in Transcriptome analysis of CC showed common genes between LEPT and 4 week HFD modulating NLRP3 inflammasome. Liver analysis showed NLRP3 protein upregulation after 16 week HFD in DIO, but also its downregulation in . We showed the link between leptin signaling and NLRP3 inflammasome activation in the ovary throughout obesity progression in mice, elucidating the molecular mechanisms underpinning ovarian failure in maternal obesity.

+view abstract Frontiers in cell and developmental biology, PMID: 34805147

Gilley J, Jackson O, Pipis M, Estiar MA, Al-Chalabi A, Danzi MC, van Eijk KR, Goutman SA, Harms MB, Houlden H, Iacoangeli A, Kaye J, Lima L, , Ravits J, Rouleau GA, Sch眉le R, Xu J, Zuchner S, Cooper-Knock J, Gan-Or Z, Reilly MM, Coleman MP

SARM1, a protein with critical NADase activity, is a central executioner in a conserved programme of axon degeneration. We report seven rare missense or in-frame microdeletion human variant alleles in patients with amyotrophic lateral sclerosis (ALS) or other motor nerve disorders that alter the SARM1 auto-inhibitory ARM domain and constitutively hyperactivate SARM1 NADase activity. The constitutive NADase activity of these seven variants is similar to that of SARM1 lacking the entire ARM domain and greatly exceeds the activity of wild-type SARM1, even in the presence of nicotinamide mononucleotide (NMN), its physiological activator. This rise in constitutive activity alone is enough to promote neuronal degeneration in response to otherwise non-harmful, mild stress. Importantly, these strong gain-of-function alleles are completely patient-specific in the cohorts studied and show a highly significant association with disease at the single gene level. These findings of disease-associated coding variants that alter SARM1 function build on previously reported genome-wide significant association with ALS for a neighbouring, more common intragenic single nucleotide polymorphism (SNP) to support a contributory role of SARM1 in these disorders. A broad phenotypic heterogeneity and variable age-of-onset of disease among patients with these alleles also raises intriguing questions about the pathogenic mechanism of hyperactive SARM1 variants.

+view abstract eLife, PMID: 34796871

Liston A, Humblet-Baron S, Duffy D, Goris A Immunology

The extreme diversity of the human immune system, forged and maintained throughout evolutionary history, provides a potent defense against opportunistic pathogens. At the same time, this immune variation is the substrate upon which a plethora of immune-associated diseases develop. Genetic analysis suggests that thousands of individually weak loci together drive up to half of the observed immune variation. Intense selection maintains this genetic diversity, even selecting for the introgressed Neanderthal or Denisovan alleles that have reintroduced variation lost during the out-of-Africa migration. Variations in age, sex, diet, environmental exposure, and microbiome each potentially explain the residual variation, with proof-of-concept studies demonstrating both plausible mechanisms and correlative associations. The confounding interaction of many of these variables currently makes it difficult to assign definitive contributions. Here, we review the current state of play in the field, identify the key unknowns in the causality of immune variation, and identify the multidisciplinary pathways toward an improved understanding.

+view abstract Nature immunology, PMID: 34795445

Garcia KKS, Abrah茫o AA

High-quality clinical research is dependent on adequate design, methodology, and data collection. The utilization of electronic data capture (EDC) systems is recommended to optimize research data through proper management. This paper's objective is to present the procedures of REDCap (Research Electronic Data Capture), which supports research development, and to promote the utilization of this software among the scientific community.

+view abstract Healthcare informatics research, PMID: 34788915

Open Access
Holoch D, Wassef M, L枚vkvist C, Zielinski D, Aflaki S, Lombard B, H茅ry T, Loew D, Howard M, Margueron R

Epigenetic inheritance of gene expression states enables a single genome to maintain distinct cellular identities. How histone modifications contribute to this process remains unclear. Using global chromatin perturbations and local, time-controlled modulation of transcription, we establish the existence of epigenetic memory of transcriptional activation for genes that can be silenced by the Polycomb group. This property emerges during cell differentiation and allows genes to be stably switched after a transient transcriptional stimulus. This transcriptional memory state at Polycomb targets operates in cis; however, rather than relying solely on read-and-write propagation of histone modifications, the memory is also linked to the strength of activating inputs opposing Polycomb proteins, and therefore varies with the cellular context. Our data and computational simulations suggest a model whereby transcriptional memory arises from double-negative feedback between Polycomb-mediated silencing and active transcription. Transcriptional memory at Polycomb targets thus depends not only on histone modifications but also on the gene-regulatory network and underlying identity of a cell.

+view abstract Nature genetics, PMID: 34782763

Open Access
MacKenzie G, Subramaniam S, Caldwell LJ, Fitzgerald D, Harrison NA, Hong S, Irani SR, Khandaker GM, Liston A, Miron VE, Mondelli V, Morgan BP, Pariante C, Shah DK, Taams LS, Teeling JL, Upthegrove R Immunology

Neuroimmunology in the broadest sense is the study of interactions between the nervous and the immune systems. These interactions play important roles in health from supporting neural development, homeostasis and plasticity to modifying behaviour. Neuroimmunology is increasingly recognised as a field with the potential to deliver a significant positive impact on human health and treatment for neurological and psychiatric disorders. Yet, translation to the clinic is hindered by fundamental knowledge gaps on the underlying mechanisms of action or the optimal timing of an intervention, and a lack of appropriate tools to visualise and modulate both systems. Here we propose ten key disease-agnostic research questions that, if addressed, could lead to significant progress within neuroimmunology in the short to medium term. We also discuss four cross-cutting themes to be considered when addressing each question: i) bi-directionality of neuroimmune interactions; ii) the biological context in which the questions are addressed (e.g. health vs disease vs across the lifespan); iii) tools and technologies required to fully answer the questions; and iv) translation into the clinic. We acknowledge that these ten questions cannot represent the full breadth of gaps in our understanding; rather they focus on areas which, if addressed, may have the most broad and immediate impacts. By defining these neuroimmunology priorities, we hope to unite existing and future research teams, who can make meaningful progress through a collaborative and cross-disciplinary effort.

+view abstract Wellcome open research, PMID: 34778569

Open Access
Osma-Garcia IC, Capitan-Sobrino D, Mouysset M, Bell SE, Lebeurrier M, Turner M, Diaz-Mu帽oz MD Immunology

The germinal centre (GC) is required for the generation of high affinity antibodies and immunological memory. Here we show that the RNA binding protein HuR has an essential function in GC B cells to sustain the GC response. In its absence, the GC reaction and production of high-affinity antibody is severely impaired. Mechanistically, HuR affects the transcriptome qualitatively and quantitatively. The expression and splicing patterns of hundreds of genes are altered in the absence of HuR. Among these genes, HuR is required for the expression of Myc and a Myc-dependent transcriptional program that controls GC B cell proliferation and Ig somatic hypermutation. Additionally, HuR regulates the splicing and abundance of mRNAs required for entry into and transition through the S phase of the cell cycle, and it modulates a gene signature associated with DNA deamination protecting GC B cells from DNA damage and cell death.

+view abstract Nature communications, PMID: 34772950

Lee JL, Linterman M Immunology

Vaccines are a highly effective intervention for conferring protection against infections and reducing the associated morbidity and mortality in vaccinated individuals. However, ageing is often associated with a functional decline in the immune system that results in poor antibody production in older individuals after vaccination. A key contributing factor of this age-related decline in vaccine efficacy is the reduced size and function of the germinal centre (GC) response. GCs are specialised microstructures where B cells undergo affinity maturation and diversification of their antibody genes, before differentiating into long-lived antibody-secreting plasma cells and memory B cells. The GC response requires the coordinated interaction of many different cell types, including B cells, T follicular helper (Tfh) cells, T follicular regulatory (Tfr) cells and stromal cell subsets like follicular dendritic cells (FDCs). This review discusses how ageing affects different components of the GC reaction that contribute to its limited output and ultimately impaired antibody responses in older individuals after vaccination. An understanding of the mechanisms underpinning the age-related decline in the GC response is crucial in informing strategies to improve vaccine efficacy and extend the healthy lifespan among older people.

+view abstract Immunology letters, PMID: 34767859

Jacobs L, Yshii L, Junius S, Geukens N, Liston A, Hollevoet K, Declerck P Immunology

To improve the anti-tumor efficacy of immune checkpoint inhibitors, numerous combination therapies are under clinical evaluation, including with IL-12 gene therapy. The current study evaluated the simultaneous delivery of the cytokine and checkpoint-inhibiting antibodies by intratumoral DNA electroporation in mice. In the MC38 tumor model, combined administration of plasmids encoding IL-12 and an anti-PD-1 antibody induced significant anti-tumor responses, yet similar to the monotherapies. When treatment was expanded with a DNA-based anti-CTLA-4 antibody, this triple combination significantly delayed tumor growth compared to IL-12 alone and the combination of anti-PD-1 and anti-CTLA-4 antibodies. Despite low drug plasma concentrations, the triple combination enabled significant abscopal effects in contralateral tumors, which was not the case for the other treatments. The DNA-based immunotherapies increased T cell infiltration in electroporated tumors, especially of CD8鈥塗 cells, and upregulated the expression of CD8鈥塭ffector markers. No general immune activation was detected in spleens following either intratumoral treatment. In B16F10 tumors, evaluation of the triple combination was hampered by a high sensitivity to control plasmids. In conclusion, intratumoral gene electrotransfer allowed effective combined delivery of multiple immunotherapeutics. This approach induced responses in treated and contralateral tumors, while limiting systemic drug exposure and potentially detrimental systemic immunological effects.

+view abstract Cancer gene therapy, PMID: 34754076

Garrison H, Agostinho M, Alvarez L, Bekaert S, Bengtsson L, Broglio E, Couso D, Ara煤jo Gomes R, Ingram Z, Martinez E, Mena AL, Nickel D, Norman M, Pinheiro I, Sol铆s-Mateos M, Bertero MG

Open Science calls for transparent science and involvement of various stakeholders. Here are examples of and advice for meaningful stakeholder engagement.

+view abstract EMBO reports, PMID: 34734669

Open Access
Monkley S, Overed-Sayer C, Parfrey H, Rassl D, Crowther D, Escudero-Ibarz L, Davis N, Carruthers A, Berks R, Coetzee M, Kolosionek E, Karlsson M, Griffin LR, Clausen M, Belfield G, Hogaboam CM, Murray LA

The unfolded protein response (UPR) is a direct consequence of cellular endoplasmic reticulum (ER) stress and a key disease driving mechanism in IPF. The resolution of the UPR is directed by PPP1R15A (GADD34) and leads to the restoration of normal ribosomal activity. While the role of PPP1R15A has been explored in lung epithelial cells, the role of this UPR resolving factor has yet to be explored in lung mesenchymal cells. The objective of the current study was to determine the expression and role of PPP1R15A in IPF fibroblasts and in a bleomycin-induced lung fibrosis model. A survey of IPF lung tissue revealed that PPP1R15A expression was markedly reduced. Targeting PPP1R15A in primary fibroblasts modulated TGF-尾-induced fibroblast to myofibroblast differentiation and exacerbated pulmonary fibrosis in bleomycin-challenged mice. Interestingly, the loss of PPP1R15A appeared to promote lung fibroblast senescence. Taken together, our findings demonstrate the major role of PPP1R15A in the regulation of lung mesenchymal cells, and regulation of PPP1R15A may represent a novel therapeutic strategy in IPF.

+view abstract Scientific reports, PMID: 34732748

Open Access
Cummings TFM, Gori K, Sanchez-Pulido L, Gavriilidis G, Moi D, Wilson AR, Murchison E, Dessimoz C, Ponting CP, Christophorou MA Epigenetics

Protein post-translational modifications (PTMs) add great sophistication to biological systems. Citrullination, a key regulatory mechanism in human physiology and pathophysiology, is enigmatic from an evolutionary perspective. Although the citrullinating enzymes peptidylarginine deiminases (PADIs) are ubiquitous across vertebrates, they are absent from yeast, worms and flies. Based on this distribution PADIs were proposed to have been horizontally transferred, but this has been contested. Here, we map the evolutionary trajectory of PADIs into the animal lineage. We present strong phylogenetic support for a clade encompassing animal and cyanobacterial PADIs that excludes fungal and other bacterial homologues. The animal and cyanobacterial PADI proteins share functionally relevant primary and tertiary synapomorphic sequences that are distinct from a second PADI type present in fungi and actinobacteria. Molecular clock calculations and sequence divergence analyses using the fossil record estimate the last common ancestor of the cyanobacterial and animal PADIs to be less than one billion years old. Additionally, under an assumption of vertical descent, PADI sequence change during this evolutionary time frame is anachronistically low, even when compared to products of likely endosymbiont gene transfer, mitochondrial proteins and some of the most highly conserved sequences in life. The consilience of evidence indicates that PADIs were introduced from cyanobacteria into animals by horizontal gene transfer (HGT). The ancestral cyanobacterial PADI is enzymatically active and can citrullinate eukaryotic proteins, suggesting that the PADI HGT event introduced a new catalytic capability into the regulatory repertoire of animals. This study reveals the unusual evolution of a pleiotropic protein modification.

+view abstract Molecular biology and evolution, PMID: 34730808

Open Access
Hill DL, Whyte CE, Innocentin S, Lee JL, Dooley J, Wang J, James EA, Lee JC, Kwok WW, Zand MS, Liston A, Carr EJ, Linterman MA Immunology

Antibody production following vaccination can provide protective immunity to subsequent infection by pathogens such as influenza viruses. However, circumstances where antibody formation is impaired after vaccination, such as in older people, require us to better understand the cellular and molecular mechanisms that underpin successful vaccination in order to improve vaccine design for at-risk groups. Here, by studying the breadth of anti-haemagglutinin (HA) IgG, serum cytokines, and B and T cell responses by flow cytometry before and after influenza vaccination, we show that formation of circulating T follicular helper (cTfh) cells was associated with high-titre antibody responses. Using Major Histocompatability Complex (MHC) class II tetramers, we demonstrate that HA-specific cTfh cells can derive from pre-existing memory CD4 T cells and have a diverse T cell receptor (TCR) repertoire. In older people, the differentiation of HA-specific cells into cTfh cells was impaired. This age-dependent defect in cTfh cell formation was not due to a contraction of the TCR repertoire, but rather was linked with an increased inflammatory gene signature in cTfh cells. Together, this suggests that strategies that temporarily dampen inflammation at the time of vaccination may be a viable strategy to boost optimal antibody generation upon immunisation of older people.

+view abstract eLife, PMID: 34726156

Open Access
Chauve L, Hodge F, Murdoch S, Masoudzadeh F, Mann HJ, Lopez-Clavijo A, Okkenhaug H, West G, Sousa BC, Segonds-Pichon A, Li C, Wingett S, Kienberger H, Kleigrewe K, De Bono M, Wakelam M, Casanueva O Epigenetics,Bioinformatics

To survive elevated temperatures, ectotherms adjust the fluidity of membranes by fine-tuning lipid desaturation levels in a process previously described to be cell autonomous. We have discovered that, in Caenorhabditis elegans, neuronal heat shock factor 1 (HSF-1), the conserved master regulator of the heat shock response (HSR), causes extensive fat remodeling in peripheral tissues. These changes include a decrease in fat desaturase and acid lipase expression in the intestine and a global shift in the saturation levels of plasma membrane's phospholipids. The observed remodeling of plasma membrane is in line with ectothermic adaptive responses and gives worms a cumulative advantage to warm temperatures. We have determined that at least 6 TAX-2/TAX-4 cyclic guanosine monophosphate (cGMP) gated channel expressing sensory neurons, and transforming growth factor 脽 (TGF-尾)/bone morphogenetic protein (BMP) are required for signaling across tissues to modulate fat desaturation. We also find neuronal hsf-1 is not only sufficient but also partially necessary to control the fat remodeling response and for survival at warm temperatures. This is the first study to show that a thermostat-based mechanism can cell nonautonomously coordinate membrane saturation and composition across tissues in a multicellular animal.

+view abstract PLoS biology, PMID: 34723964

Ridnik M, Schoenfelder S, Gonen N Epigenetics

Sex determination is the process by which an initial bipotential gonad adopts either a testicular or ovarian cell fate. The inability to properly complete this process leads to a group of developmental disorders classified as disorders of sex development (DSD). To date, dozens of genes were shown to play roles in mammalian sex determination, and mutations in these genes can cause DSD in humans or gonadal sex reversal/dysfunction in mice. However, exome sequencing currently provides genetic diagnosis for only less than half of DSD patients. This points towards a major role for the non-coding genome during sex determination. In this review, we highlight recent advances in our understanding of non-coding, cis-acting gene regulatory elements and discuss how they may control transcriptional programmes that underpin sex determination in the context of the 3-dimensional folding of chromatin. As a paradigm, we focus on the Sox9 gene, a prominent pro-male factor and one of the most extensively studied genes in gonadal cell fate determination.

+view abstract Sexual development, PMID: 34710870

Ulferts R, Marcassa E, Timimi L, Lee LC, Daley A, Montaner B, Turner SD, Florey O, Baillie JK, Beale R Signalling

Although commonly associated with autophagosomes, LC3 can also be recruited to membranes by covalent lipidation in a variety of non-canonical contexts. These include responses to ionophores such as the M2 proton channel of influenza A virus. We report a subtractive CRISPR screen that identifies factors required for non-canonical LC3 lipidation. As well as the enzyme complexes directly responsible for LC3 lipidation in all contexts, we show the RALGAP complex is important for M2-induced, but not ionophore drug-induced, LC3 lipidation. In contrast, ATG4D is responsible for LC3 recycling in M2-induced and basal LC3 lipidation. Identification of a vacuolar ATPase subunit in the screen suggests a common mechanism for non-canonical LC3 recruitment. Influenza-induced and ionophore drug-induced LC3 lipidation lead to association of the vacuolar ATPase and ATG16L1 and can be antagonized by Salmonella SopF. LC3 recruitment to erroneously neutral compartments may therefore represent a response to damage caused by diverse invasive pathogens.

+view abstract Cell reports, PMID: 34706226

Open Access
Canti L, Humblet-Baron S, Desombere I, Neumann J, Pannus P, Heyndrickx L, Henry A, Servais S, Willems E, Ehx G, Goriely S, Seidel L, Michiels J, Willems B, Liston A, Ari毛n KK, Beguin Y, Goossens ME, Marchant A, Baron F Immunology

Factors affecting response to SARS-CoV-2 mRNA vaccine in allogeneic hematopoietic stem cell transplantation (allo-HCT) recipients remain to be elucidated.

+view abstract Journal of hematology & oncology, PMID: 34689821

Ktistakis NT Signalling

The pathway of mitochondrial-specific autophagy (mitophagy, defined here as the specific elimination of mitochondria following distinct mitochondrial injuries or developmental/metabolic alterations) is important in health and disease. This review will be focussed on the earliest steps of the pathway concerning the mechanisms and requirements for initiating autophagosome formation on a mitochondrial target. More specifically, and in view of the fact that we understand the basic mechanism of non-selective autophagy and are beginning to reshape this knowledge towards the pathways of selective autophagy, two aspects of mitophagy will be covered: (i) How does a machinery normally working in association with the endoplasmic reticulum (ER) to make an autophagosome can also do so at a site distinct from the ER such as on the surface of the targeted cargo? and (ii) how does the machinery deal with cargo of multiple sizes?

+view abstract Biochemical Society transactions, PMID: 34665253

Open Access
Lea RA, McCarthy A, Boeing S, Fallesen T, Elder K, Snell P, Christie L, Adkins S, Shaikly V, Taranissi M, Niakan KK Epigenetics

Current knowledge of the transcriptional regulation of human pluripotency is incomplete, with lack of interspecies conservation observed. Single-cell transcriptomics analysis of human embryos previously enabled us to identify transcription factors, including the zinc-finger protein KLF17, that are enriched in the human epiblast and na茂ve human embryonic stem cells (hESCs). Here, we show that KLF17 is expressed coincident with the known pluripotency-associated factors NANOG and SOX2 across human blastocyst development. We investigate the function of KLF17 using primed and na茂ve hESCs for gain- and loss-of-function analyses. We find that ectopic expression of KLF17 in primed hESCs is sufficient to induce a na茂ve-like transcriptome and that KLF17 can drive transgene-mediated resetting to na茂ve pluripotency. This implies a role for KLF17 in establishing na茂ve pluripotency. However, CRISPR-Cas9-mediated knockout studies reveal that KLF17 is not required for na茂ve pluripotency acquisition in vitro. Transcriptome analysis of na茂ve hESCs identifies subtle effects on metabolism and signalling pathways following KLF17 loss of function, and possible redundancy with other KLF paralogues. Overall, we show that KLF17 is sufficient, but not necessary, for na茂ve pluripotency under the given in vitro conditions.

+view abstract Development, PMID: 34661235

Open Access
Richard AC, Frazer GL, Ma CY, Griffiths GM Immunology

How T lymphocytes tune their responses to different strengths of stimulation is a fundamental question in immunology. Recent work using new optogenetic, single-cell genomic, and live-imaging approaches has revealed that stimulation strength controls the rate of individual cell responses within a population. Moreover, these responses have been found to use shared molecular programs, regardless of stimulation strength. However, additional data indicate that stimulation duration or cytokine feedback can impact later gene expression phenotypes of activated cells. In-depth molecular studies have suggested mechanisms by which stimulation strength might modulate the probability of T cell activation. This emerging model allows activating T cells to achieve a wide range of population responses through probabilistic control within individual cells.

+view abstract Trends in immunology, PMID: 34649777

Diskin C, Corcoran SE, Tyrrell VJ, McGettrick AF, Zaslona Z, O'Donnell VB, Nolan DP, O'Neill LAJ Signalling

The protozoan parasite is the causative agent of the neglected tropical disease human African trypanosomiasis, otherwise known as sleeping sickness. Trypanosomes have evolved many immune-evasion mechanisms to facilitate their own survival, as well as prolonging host survival to ensure completion of the parasitic life cycle. A key feature of the bloodstream form of is the secretion of aromatic keto acids, which are metabolized from tryptophan. In this study, we describe an immunomodulatory role for one of these keto acids, indole-3-pyruvate (I3P). We demonstrate that I3P inhibits the production of PGs in activated macrophages. We also show that, despite the reduction in downstream PGs, I3P augments the expression of cyclooxygenase (COX2). This increase in COX2 expression is mediated in part via inhibition of PGs relieving a negative-feedback loop on COX2. Activation of the aryl hydrocarbon receptor also participates in this effect. However, the increase in COX2 expression is of little functionality, as we also provide evidence to suggest that I3P targets COX activity. This study therefore details an evasion strategy by which a trypanosome-secreted metabolite potently inhibits macrophage-derived PGs, which might promote host and trypanosome survival.

+view abstract Journal of immunology, PMID: 34635586

Diskin C, Zotta A, Tyrrell VJ, Zaslona Z, O'Donnell VB, O'Neill LAJ Signalling

PGs are important proinflammatory lipid mediators, the significance of which is highlighted by the widespread and efficacious use of nonsteroidal anti-inflammatory drugs in the treatment of inflammation. 4-Octyl itaconate (4-OI), a derivative of the Krebs cycle-derived metabolite itaconate, has recently garnered much interest as an anti-inflammatory agent. In this article, we show that 4-OI limits PG production in murine macrophages stimulated with the TLR1/2 ligand Pam3CSK4. This decrease in PG secretion is due to a robust suppression of cyclooxygenase 2 (COX2) expression by 4-OI, with both mRNA and protein levels decreased. Dimethyl fumarate, a fumarate derivative used in the treatment of multiple sclerosis, with properties similar to itaconate, replicated the phenotype observed with 4-OI. We also demonstrate that the decrease in COX2 expression and inhibition of downstream PG production occurs in an NRF2-independent manner. Our findings provide a new insight into the potential of 4-OI as an anti-inflammatory agent and also identifies a novel anti-inflammatory function of dimethyl fumarate.

+view abstract Journal of immunology, PMID: 34635585

Nieto-Torres JL, Durgan J, Franco-Romero A, Grumati P, Guardia CM, Leidal AM, Mandell MA, Towers CG, Wang F Signalling

The Autophagy, Inflammation and Metabolism (AIM) Center organized a globally accessible, virtual eSymposium during the COVID-19 pandemic in 2020. The conference included presentations from scientific leaders, as well as a career discussion panel, and provided a much-needed platform for early-career investigators (ECIs) to showcase their research in autophagy. This Perspective summarizes the science presented by the ECIs during the event and discusses the lessons learned from a virtual meeting of this kind during the pandemic. The meeting was a learning experience for all involved, and the ECI participants herein offer their thoughts on the pros and cons of virtual meetings as a modality, either as standalone or hybrid events, with a view towards the post-pandemic world.

+view abstract Journal of cell science, PMID: 34622922