СƵ

 

Filter

Publications

The СƵ Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Rugg-Gunn PJ Epigenetics

+view abstract Nature cell biology, PMID: 31548607 2019

Open Access
Furlong RM, Lindsay A, Anderson KE, Hawkins PT, Sullivan AM, O'Neill C Signalling

Akt signalling is central to cell survival, metabolism, protein and lipid homeostasis, and is impaired in Parkinson's disease(PD). Akt activation is reduced in the PD brain, and by many PD-causing genes, including PINK1(PTEN-induced putative kinase-1). This study investigated the mechanisms by which PINK1 regulates Akt signalling. Our results reveal for the first time that PINK1 constitutively activates Akt in a PINK1-kinase dependent manner in the absence of growth factors, and enhances Akt activation in normal growth medium. In PINK1 modified MEFs, agonist-induced Akt signalling failed in the absence of PINK1, due to significantly impaired PINK1 kinase-dependent increases in PI(3,4,5)P at both plasma membrane and Golgi. In the absence of PINK1, PI(3,4,5)P levels did not increase in the Golgi, and there was significant Golgi fragmentation, a recognised characteristic of PD neuropathology. PINK1 kinase activity protected the Golgi from fragmentation in an Akt-dependent fashion. This study demonstrates a new role for PINK1 as a primary upstream activator of Akt via PINK1 kinase-dependent regulation of its primary activator PI(3,4,5)P, providing novel mechanistic information on how loss of PINK1 impairs Akt signalling in PD.

+view abstract Journal of cell science, PMID: 31540955 2019

Hemberger M, Hanna CW, Dean W Epigenetics

The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.

+view abstract Nature reviews. Genetics, PMID: 31534202 2019

González-García S, Mosquera M, Fuentes P, Palumbo T, Escudero A, Pérez-Martínez A, Ramírez M, Corcoran AE, Toribio ML Immunology

T-cell acute lymphoblastic leukemia (T-ALL) is an aggressive hematological malignancy resulting from the dysregulation of signaling pathways that control intrathymic T-cell development. Relapse rates are still significant and prognosis is particularly bleak for relapsed patients. Therefore, development of novel therapies specifically targeting pathways controlling leukemia-initiating cell (LIC) activity is mandatory for fighting refractory T-ALL. The interleukin-7 receptor (IL-7R) is a crucial T-cell developmental pathway commonly expressed in T-ALL, which has been implicated in leukemia progression. However, the significance of IL-7R/IL-7 signaling in T-ALL pathogenesis and its contribution to disease relapse remain unknown. To directly explore whether IL-7R targeting may be therapeutically efficient against T-ALL relapse, we focused here on a known Notch1-induced T-ALL model, since a majority of T-ALL patients harbor activating mutations in , which is a transcriptional regulator of IL-7R expression. Using loss-of-function approaches, we show that -deficient, but not wild type, mouse hematopoietic progenitors transduced with constitutively active Notch1 failed to generate leukemia upon transplantation into immunodeficient mice, thus providing formal evidence that IL-7R function is essential for Notch1-induced T-cell leukemogenesis. Moreover, we demonstrate that IL-7R expression is an early functional biomarker of T-ALL cells with LIC potential, and demonstrate that impaired IL-7R signaling hampers engraftment and progression of patient-derived T-ALL xenografts. Notably, we show that IL-7R-dependent LIC activity and leukemia progression can be extended to human B-ALL. These results have important therapeutic implications, highlighting the relevance that targeting normal IL-7R signaling may have in future therapeutic interventions, particularly for preventing T-ALL (and B-ALL) relapse.

+view abstract Blood, PMID: 31530562 2019

Evans PD

The rapid non-genomic actions of 17β-estradiol in multiple tissues, including the nervous system, may involve the activation of the G-protein-coupled receptor, GPER. Different signalling pathways have been suggested to be activated by GPER in different cell lines and tissues. Controversially, GPER has also been suggested to be activated by the mineralocorticoid aldosterone, and by the non-steroidal diphenylacrylamide compound, STX, in some preparations. Evidence for the ability of the GPER agonist, G-1, and for aldosterone in the presence of the mineralocorticoid receptor antagonist, eplerenone, to potentiate forskolin-stimulated cyclic AMP levels in the hippocampal clonal cell line, mHippoE-18 is reviewed. The effects of both agents are blocked by the GPER antagonist G36, by PTX, (suggesting the involvement of Gi/o G proteins), by BAPTA-AM, (suggesting they are calcium sensitive), by wortmannin (suggesting an involvement of PI3Kinase) and by soluble amyloid-β peptides. STX also stimulates cyclic AMP levels in mHippoE-18 cells and these effects are blocked by G36 and PTX, as well as by amyloid-β peptides. This suggests that both aldosterone and STX may be capable of activating GPER in mHippoE-18 cells. Possible molecular mechanisms that may underlie these effects are discussed, together with possible forward directions for research on rapid non-genomic signalling by GPER, emphasising the importance of understanding the spatio-temporal aspects of its signalling in various tissues.

+view abstract Steroids, PMID: 31499073 2019

Sadiyah MF, Roychoudhuri R Immunology

Cells of the adaptive immune system, including CD4 and CD8 T cells, as well as B cells, possess the ability to undergo dynamic changes in population size, differentiation state, and function to counteract diverse and temporally stochastic threats from the external environment. To achieve this, lymphocytes must be able to rapidly control their gene-expression programs in a cell-type-specific manner and in response to extrinsic signals. Such capacity is provided by transcription factors (TFs), which bind to the available repertoire of regulatory DNA elements in distinct lymphocyte subsets to program cell-type-specific gene expression. Here we provide a set of protocols that utilize massively parallel sequencing-based approaches to map genome-wide TF-binding sites and accessible chromatin, with consideration of the unique aspects and technical issues facing their application to lymphocytes. We show how to computationally validate and analyze aligned data to map differentially enriched/accessible sites, identify enriched DNA sequence motifs, and detect the position of nucleosomes adjacent to accessible DNA elements. These techniques, when applied to immune cells, can enhance our understanding of how gene-expression programs are controlled within lymphocytes to coordinate immune function in homeostasis and disease. © 2019 by John Wiley & Sons, Inc.

+view abstract Current protocols in immunology, PMID: 31483104 2019

Bruno L, Ramlall V, Studer RA, Sauer S, Bradley D, Dharmalingam G, Carroll T, Ghoneim M, Chopin M, Nutt SL, Elderkin S, Rueda DS, Fisher AG, Siggers T, Beltrao P, Merkenschlager M

In multicellular organisms, duplicated genes can diverge through tissue-specific gene expression patterns, as exemplified by highly regulated expression of RUNX transcription factor paralogs with apparent functional redundancy. Here we asked what cell-type-specific biologies might be supported by the selective expression of RUNX paralogs during Langerhans cell and inducible regulatory T cell differentiation. We uncovered functional nonequivalence between RUNX paralogs. Selective expression of native paralogs allowed integration of transcription factor activity with extrinsic signals, while non-native paralogs enforced differentiation even in the absence of exogenous inducers. DNA binding affinity was controlled by divergent amino acids within the otherwise highly conserved RUNT domain and evolutionary reconstruction suggested convergence of RUNT domain residues toward submaximal strength. Hence, the selective expression of gene duplicates in specialized cell types can synergize with the acquisition of functional differences to enable appropriate gene expression, lineage choice and differentiation in the mammalian immune system.

+view abstract Nature immunology, PMID: 31451789 2019

Open Access
Fraser J, Simpson J, Fontana R, Kishi-Itakura C, Ktistakis NT, Gammoh N Signalling

Despite recently uncovered connections between autophagy and the endocytic pathway, the role of autophagy in regulating endosomal function remains incompletely understood. Here, we find that the ablation of autophagy-essential players disrupts EGF-induced endocytic trafficking of EGFR. Cells lacking ATG7 or ATG16L1 exhibit increased levels of phosphatidylinositol-3-phosphate (PI(3)P), a key determinant of early endosome maturation. Increased PI(3)P levels are associated with an accumulation of EEA1-positive endosomes where EGFR trafficking is stalled. Aberrant early endosomes are recognised by the autophagy machinery in a TBK1- and Gal8-dependent manner and are delivered to LAMP2-positive lysosomes. Preventing this homeostatic regulation of early endosomes by autophagy reduces EGFR recycling to the plasma membrane and compromises downstream signalling and cell survival. Our findings uncover a novel role for the autophagy machinery in maintaining early endosome function and growth factor sensing.

+view abstract EMBO reports, PMID: 31448519 2019

Horsefield S, Burdett H, Zhang X, Manik MK, Shi Y, Chen J, Qi T, Gilley J, Lai JS, Rank MX, Casey LW, Gu W, Ericsson DJ, Foley G, Hughes RO, Bosanac T, von Itzstein M, Rathjen JP, Nanson JD, Boden M, Dry IB, Williams SJ, Staskawicz BJ, Coleman MP, Ve T, Dodds PN, Kobe B

SARM1 (sterile alpha and TIR motif containing 1) is responsible for depletion of nicotinamide adenine dinucleotide in its oxidized form (NAD) during Wallerian degeneration associated with neuropathies. Plant nucleotide-binding leucine-rich repeat (NLR) immune receptors recognize pathogen effector proteins and trigger localized cell death to restrict pathogen infection. Both processes depend on closely related Toll/interleukin-1 receptor (TIR) domains in these proteins, which, as we show, feature self-association-dependent NAD cleavage activity associated with cell death signaling. We further show that SARM1 SAM (sterile alpha motif) domains form an octamer essential for axon degeneration that contributes to TIR domain enzymatic activity. The crystal structures of ribose and NADP (the oxidized form of nicotinamide adenine dinucleotide phosphate) complexes of SARM1 and plant NLR RUN1 TIR domains, respectively, reveal a conserved substrate binding site. NAD cleavage by TIR domains is therefore a conserved feature of animal and plant cell death signaling pathways.

+view abstract Science (New York, N.Y.), PMID: 31439792 2019

Open Access
Harman JL, Dobnikar L, Chappell J, Stokell BG, Dalby A, Foote K, Finigan A, Freire-Pritchett P, Taylor AL, Worssam MD, Madsen RR, Loche E, Uryga A, Bennett MR, Jørgensen HF

Vascular inflammation underlies cardiovascular disease. Vascular smooth muscle cells (VSMCs) upregulate selective genes, including MMPs (matrix metalloproteinases) and proinflammatory cytokines upon local inflammation, which directly contribute to vascular disease and adverse clinical outcome. Identification of factors controlling VSMC responses to inflammation is therefore of considerable therapeutic importance. Here, we determine the role of Histone H3 lysine 9 di-methylation (H3K9me2), a repressive epigenetic mark that is reduced in atherosclerotic lesions, in regulating the VSMC inflammatory response. Approach and Results: We used VSMC-lineage tracing to reveal reduced H3K9me2 levels in VSMCs of arteries after injury and in atherosclerotic lesions compared with control vessels. Intriguingly, chromatin immunoprecipitation showed H3K9me2 enrichment at a subset of inflammation-responsive gene promoters, including MMP3, MMP9, MMP12, and IL6, in mouse and human VSMCs. Inhibition of G9A/GLP, the primary enzymes responsible for H3K9me2, significantly potentiated inflammation-induced gene induction in vitro and in vivo without altering NFκB (nuclear factor kappa-light-chain-enhancer of activated B cell) and MAPK signaling. Rather, reduced G9A/GLP activity enhanced inflammation-induced binding of transcription factors NFκB-p65 and cJUN to H3K9me2 target gene promoters MMP3 and IL6. Taken together, these results suggest that promoter-associated H3K9me2 directly attenuates the induction of target genes in response to inflammation in human VSMCs.

+view abstract Arteriosclerosis, thrombosis, and vascular biology, PMID: 31434493 2019

Open Access
McCormick B, Craig HE, Chu JY, Carlin LM, Canel M, Wollweber F, Toivakka M, Michael M, Astier AL, Norton L, Lilja J, Felton JM, Sasaki T, Ivaska J, Hers I, Dransfield I, Rossi AG, Vermeren S

Neutrophils are abundant circulating leukocytes that are rapidly recruited to sites of inflammation in an integrin-dependent fashion. Contrasting with the well-characterized regulation of integrin activation, mechanisms regulating integrin inactivation remain largely obscure. Using mouse neutrophils, we demonstrate in this study that the GTPase activating protein ARAP3 is a critical regulator of integrin inactivation; experiments with Chinese hamster ovary cells indicate that this is not restricted to neutrophils. Specifically, ARAP3 acts in a negative feedback loop downstream of PI3K to regulate integrin inactivation. Integrin ligand binding drives the activation of PI3K and of its effectors, including ARAP3, by outside-in signaling. ARAP3, in turn, promotes localized integrin inactivation by negative inside-out signaling. This negative feedback loop reduces integrin-mediated PI3K activity, with ARAP3 effectively switching off its own activator, while promoting turnover of substrate adhesions. In vitro, ARAP3-deficient neutrophils display defective PIP3 polarization, adhesion turnover, and transendothelial migration. In vivo, ARAP3-deficient neutrophils are characterized by a neutrophil-autonomous recruitment defect to sites of inflammation.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 31427445 2019

Stuart HT, Stirparo GG, Lohoff T, Bates LE, Kinoshita M, Lim CY, Sousa EJ, Maskalenka K, Radzisheuskaya A, Malcolm AA, Alves MRP, Lloyd RL, Nestorowa S, Humphreys P, Mansfield W, Reik W, Bertone P, Nichols J, Göttgens B, Silva JCR Epigenetics

Understanding how cell identity transitions occur and whether there are multiple paths between the same beginning and end states are questions of wide interest. Here we show that acquisition of naive pluripotency can follow transcriptionally and mechanistically distinct routes. Starting from post-implantation epiblast stem cells (EpiSCs), one route advances through a mesodermal state prior to naive pluripotency induction, whereas another transiently resembles the early inner cell mass and correspondingly gains greater developmental potency. These routes utilize distinct signaling networks and transcription factors but subsequently converge on the same naive endpoint, showing surprising flexibility in mechanisms underlying identity transitions and suggesting that naive pluripotency is a multidimensional attractor state. These route differences are reconciled by precise expression of Oct4 as a unifying, essential, and sufficient feature. We propose that fine-tuned regulation of this "transition factor" underpins multidimensional access to naive pluripotency, offering a conceptual framework for understanding cell identity transitions.

+view abstract Cell stem cell, PMID: 31422912 2019

Open Access
Debrand E, Chakalova L, Miles J, Dai YF, Goyenechea B, Dye S, Osborne CS, Horton A, Harju-Baker S, Pink RC, Caley D, Carter DRF, Peterson KR, Fraser P

Transcriptome analyses show a surprisingly large proportion of the mammalian genome is transcribed; much more than can be accounted for by genes and introns alone. Most of this transcription is non-coding in nature and arises from intergenic regions, often overlapping known protein-coding genes in sense or antisense orientation. The functional relevance of this widespread transcription is unknown. Here we characterize a promoter responsible for initiation of an intergenic transcript located approximately 3.3 kb and 10.7 kb upstream of the adult-specific human β-globin genes. Mutational analyses in β-YAC transgenic mice show that alteration of intergenic promoter activity results in ablation of H3K4 di- and tri-methylation and H3 hyperacetylation extending over a 30 kb region immediately downstream of the initiation site, containing the adult δ- and β-globin genes. This results in dramatically decreased expression of the adult genes through position effect variegation in which the vast majority of definitive erythroid cells harbor inactive adult globin genes. In contrast, expression of the neighboring ε- and γ-globin genes is completely normal in embryonic erythroid cells, indicating a developmentally specific variegation of the adult domain. Our results demonstrate a role for intergenic non-coding RNA transcription in the propagation of histone modifications over chromatin domains and epigenetic control of β-like globin gene transcription during development.

+view abstract PloS one, PMID: 31412036 2019

Open Access
Martin-Herranz DE, Aref-Eshghi E, Bonder MJ, Stubbs TM, Choufani S, Weksberg R, Stegle O, Sadikovic B, Reik W, Thornton JM Epigenetics

Epigenetic clocks are mathematical models that predict the biological age of an individual using DNA methylation data and have emerged in the last few years as the most accurate biomarkers of the aging process. However, little is known about the molecular mechanisms that control the rate of such clocks. Here, we have examined the human epigenetic clock in patients with a variety of developmental disorders, harboring mutations in proteins of the epigenetic machinery.

+view abstract Genome biology, PMID: 31409373 2019

Open Access
Evans PD

The GPCR, GPER, mediates many of the rapid, non-genomic actions of 17β-estradiol in multiple tissues, including the nervous system. Controversially, it has also been suggested to be activated by aldosterone, and by the non-steroidal diphenylacrylamide compound, STX, in some preparations. Here, the ability of the GPER agonist, G-1, and aldosterone in the presence of the mineralocorticoid receptor antagonist, eplerenone, to potentiate forskolin-stimulated cyclic AMP levels in the hippocampal clonal cell line, mHippoE-18, are compared. Both stimulatory effects are blocked by the GPER antagonist G36, by PTX, (suggesting the involvement of Gi/o G proteins), by BAPTA-AM, (suggesting they are calcium sensitive), by wortmannin (suggesting an involvement of PI3Kinase) and by soluble amyloid-β peptides. STX also stimulates cyclic AMP levels in mHippoE-18 cells and these effects are blocked by G36 and PTX, as well as by amyloid-β peptides. This suggests that both aldosterone and STX may modulate GPER signalling in mHippoE-18 cells.

+view abstract Molecular and cellular endocrinology, PMID: 31404576 2019

Open Access
Wilkinson MJ, Selman C, McLaughlin L, Horan L, Hamilton L, Gilbert C, Chadwick C, Flynn JN

Driven by the longer lifespans of humans, particularly in Westernised societies, and the need to know more about 'healthy ageing', ageing mice are being used increasingly in scientific research. Many departments and institutes involved with ageing research have developed their own systems to determine intervention points for potential refinements and to identify humane end points. Several good systems are in use, but variations between them could contribute to poor reproducibility of the science achieved. Working with scientific and regulatory communities in the UK, we have reviewed the clinical signs observed in ageing mice and developed recommendations for enhanced monitoring, behaviour assessment, husbandry and veterinary interventions. We advocate that the default time point for enhanced monitoring should be 15 months of age, unless prior information is available. Importantly, the enhanced monitoring should cause no additional harms to the animals. Where a mouse strain is well characterised, the onset of age-related enhanced monitoring may be modified based on knowledge of the onset of an expected age-related clinical sign. In progeroid models where ageing is accelerated, enhanced monitoring may need to be brought forward. Information on the background strain must be considered, as it influences the onset of age-related clinical signs. The range of ageing models currently used means that there will be no 'one-size fits all' solution. Increased awareness of the issues will lead to more refined and consistent husbandry of ageing mice, and application of humane end points will help to reduce the numbers of animals maintained for longer than is scientifically justified.

+view abstract Laboratory animals, PMID: 31403890 2019

Open Access
Shi H, Strogantsev R, Takahashi N, Kazachenka A, Lorincz MC, Hemberger M, Ferguson-Smith AC

KRAB zinc finger proteins (KZFPs) represent one of the largest families of DNA-binding proteins in vertebrate genomes and appear to have evolved to silence transposable elements (TEs) including endogenous retroviruses through sequence-specific targeting of repressive chromatin states. ZFP57 is required to maintain the post-fertilization DNA methylation memory of parental origin at genomic imprints. Here we conduct RNA-seq and ChIP-seq analyses in normal and ZFP57 mutant mouse ES cells to understand the relative importance of ZFP57 at imprints, unique and repetitive regions of the genome.

+view abstract Epigenetics & chromatin, PMID: 31399135 2019

Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, Krueger F, Segonds-Pichon A, De Vos M, Andrews S, Smitz J, Kelsey G, Anckaert E Epigenetics,Bioinformatics

Does imprinted DNA methylation or imprinted gene expression differ between human blastocysts from conventional ovarian stimulation (COS) and an optimized two-step IVM method (CAPA-IVM) in age-matched polycystic ovary syndrome (PCOS) patients?

+view abstract Human reproduction (Oxford, England), PMID: 31398248 2019

Open Access
Roco JA, Mesin L, Binder SC, Nefzger C, Gonzalez-Figueroa P, Canete PF, Ellyard J, Shen Q, Robert PA, Cappello J, Vohra H, Zhang Y, Nowosad CR, Schiepers A, Corcoran LM, Toellner KM, Polo JM, Meyer-Hermann M, Victora GD, Vinuesa CG Immunology

Class-switch recombination (CSR) is a DNA recombination process that replaces the immunoglobulin (Ig) constant region for the isotype that can best protect against the pathogen. Dysregulation of CSR can cause self-reactive BCRs and B cell lymphomas; understanding the timing and location of CSR is therefore important. Although CSR commences upon T cell priming, it is generally considered a hallmark of germinal centers (GCs). Here, we have used multiple approaches to show that CSR is triggered prior to differentiation into GC B cells or plasmablasts and is greatly diminished in GCs. Despite finding a small percentage of GC B cells expressing germline transcripts, phylogenetic trees of GC BCRs from secondary lymphoid organs revealed that the vast majority of CSR events occurred prior to the onset of somatic hypermutation. As such, we have demonstrated the existence of IgM-dominated GCs, which are unlikely to occur under the assumption of ongoing switching.

+view abstract Immunity, PMID: 31375460

Samant RS, Masto VB, Frydman J Signalling

Gene dosage alterations caused by aneuploidy are a common feature of most cancers yet pose severe proteotoxic challenges. Therefore, cells have evolved various dosage compensation mechanisms to limit the damage caused by the ensuing protein level imbalances. For instance, for heteromeric protein complexes, excess nonstoichiometric subunits are rapidly recognized and degraded. In this issue of , Brennan et al. (pp. 1031-1047) reveal that sequestration of nonstoichiometric subunits into aggregates is an alternative mechanism for dosage compensation in aneuploid budding yeast and human cell lines. Using a combination of proteomic and genetic techniques, they found that excess proteins undergo either degradation or aggregation but not both. Which route is preferred depends on the half-life of the protein in question. Given the multitude of diseases linked to either aneuploidy or protein aggregation, this study could serve as a springboard for future studies with broad-spanning implications.

+view abstract Genes & development, PMID: 31371460 2019

Open Access
Zachari M, Gudmundsson SR, Li Z, Manifava M, Shah R, Smith M, Stronge J, Karanasios E, Piunti C, Kishi-Itakura C, Vihinen H, Jokitalo E, Guan JL, Buss F, Smith AM, Walker SA, Eskelinen EL, Ktistakis NT Signalling,Imaging

The dynamics and coordination between autophagy machinery and selective receptors during mitophagy are unknown. Also unknown is whether mitophagy depends on pre-existing membranes or is triggered on the surface of damaged mitochondria. Using a ubiquitin-dependent mitophagy inducer, the lactone ivermectin, we have combined genetic and imaging experiments to address these questions. Ubiquitination of mitochondrial fragments is required the earliest, followed by auto-phosphorylation of TBK1. Next, early essential autophagy proteins FIP200 and ATG13 act at different steps, whereas ULK1 and ULK2 are dispensable. Receptors act temporally and mechanistically upstream of ATG13 but downstream of FIP200. The VPS34 complex functions at the omegasome step. ATG13 and optineurin target mitochondria in a discontinuous oscillatory way, suggesting multiple initiation events. Targeted ubiquitinated mitochondria are cradled by endoplasmic reticulum (ER) strands even without functional autophagy machinery and mitophagy adaptors. We propose that damaged mitochondria are ubiquitinated and dynamically encased in ER strands, providing platforms for formation of the mitophagosomes.

+view abstract Developmental cell, PMID: 31353311 2019

Open Access
Denton AE, Carr EJ, Magiera LP, Watts AJB, Fearon DT Immunology

The induction of adaptive immunity is dependent on the structural organization of LNs, which is in turn governed by the stromal cells that underpin LN architecture. Using a novel fate-mapping mouse model, we trace the developmental origin of mesenchymal LN stromal cells (mLNSCs) to a previously undescribed embryonic fibroblast activation protein-α (FAP) progenitor. FAP cells of the LN anlagen express lymphotoxin β receptor (LTβR) and vascular cell adhesion molecule (VCAM), but not intercellular adhesion molecule (ICAM), suggesting they are early mesenchymal lymphoid tissue organizer (mLTo) cells. Clonal labeling shows that FAP progenitors locally differentiate into mLNSCs. This process is also coopted in nonlymphoid tissues in response to infection to facilitate the development of tertiary lymphoid structures, thereby mimicking the process of LN ontogeny in response to infection.

+view abstract The Journal of experimental medicine, PMID: 31324739 2019

Open Access
Kazakevych J, Stoyanova E, Liebert A, Varga-Weisz P

The intestinal epithelium undergoes constant regeneration driven by intestinal stem cells. How old age affects the transcriptome in this highly dynamic tissue is an important, but poorly explored question. Using transcriptomics on sorted intestinal stem cells and adult enterocytes, we identified candidate genes, which change expression on aging. Further validation of these on intestinal epithelium of multiple middle-aged versus old-aged mice highlighted the consistent up-regulation of the expression of the gene encoding chemokine receptor Ccr2, a mediator of inflammation and several disease processes. We observed also increased expression of Strc, coding for stereocilin, and dramatically decreased expression of Rps4l, coding for a ribosome subunit. Ccr2 and Rps4l are located close to the telomeric regions of chromosome 9 and 6, respectively. As only few genes were differentially expressed and we did not observe significant protein level changes of identified ageing markers, our analysis highlights the overall robustness of murine intestinal epithelium gene expression to old age.

+view abstract Scientific reports, PMID: 31320724 2019

Open Access
Imanikia S, Özbey NP, Krueger C, Casanueva O, Taylor RC Epigenetics,Bioinformatics

The unfolded protein response of the endoplasmic reticulum (UPR) is a crucial mediator of secretory pathway homeostasis. Expression of the spliced and active form of the UPR transcription factor XBP-1, XBP-1s, in the nervous system triggers activation of the UPR in the intestine of Caenorhabditis elegans (C. elegans) through release of a secreted signal, leading to increased longevity. We find that expression of XBP-1s in the neurons or intestine of the worm strikingly improves proteostasis in multiple tissues, through increased clearance of toxic proteins. To identify the mechanisms behind this enhanced proteostasis, we conducted intestine-specific RNA-seq analysis to identify genes upregulated in the intestine when XBP-1s is expressed in neurons. This revealed that neuronal XBP-1s increases the expression of genes involved in lysosome function. Lysosomes in the intestine of animals expressing neuronal XBP-1s are more acidic, and lysosomal protease activity is higher. Moreover, intestinal lysosome function is necessary for enhanced lifespan and proteostasis. These findings suggest that activation of the UPR in the intestine through neuronal signaling can increase the activity of lysosomes, leading to extended longevity and improved proteostasis across tissues.

+view abstract Current biology : CB, PMID: 31303493 2019