小猪视频

 

Filter

Publications

The 小猪视频 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
Griffiths B,Lewis CA,Bensaad K,Ros S,Zhang Q,Ferber EC,Konisti S,Peck B,Miess H,East P,Wakelam M,Harris AL,Schulze A Signalling,Lipidomics

Regulation of lipid metabolism via activation of sterol regulatory element binding proteins (SREBPs) has emerged as an important function of the Akt/mTORC1 signaling axis. Although the contribution of dysregulated Akt/mTORC1 signaling to cancer has been investigated extensively and altered lipid metabolism is observed in many tumors, the exact role of SREBPs in the control of biosynthetic processes required for Akt-dependent cell growth and their contribution to tumorigenesis remains unclear.

+view abstract Cancer & metabolism, PMID: 24280005 2013

Open Access
Santos F, Peat J, Burgess H, Rada C, Reik W, Dean W Epigenetics

DNA methylation in mammals is an epigenetic mark necessary for normal embryogenesis. During development active loss of methylation occurs in the male pronucleus during the first cell cycle after fertilisation. This is accompanied by major chromatin remodelling and generates a marked asymmetry between the paternal and maternal genomes. The mechanism(s) by which this is achieved implicate, among others, base excision repair (BER) components and more recently a major role for TET3 hydroxylase. To investigate these methylation dynamics further we have analysed DNA methylation and hydroxymethylation in fertilised mouse oocytes by indirect immunofluorescence (IF) and evaluated the relative contribution of different candidate factors for active demethylation in knock-out zygotes by three-dimensional imaging and IF semi-quantification.

+view abstract Epigenetics & chromatin, PMID: 24279473 2013

Open Access
K Okkenhaug

In this issue of Chemistry & Biology, Winkler and colleagues describe the discovery and preclinical development of IPI-145, a new inhibitor of the phosphoinositide 3-kinase (PI3K) isoforms p110脦麓 and p110脦鲁 that have entered clinical trials.

+view abstract Chemistry & biology, PMID: 24267274 2013

Open Access
Siggs OM, Yates AL, Schlenner S, Liston A, Lesage S, Goodnow CC Immunology

Quantitative reductions in T-cell receptor (TCR) signalling are associated with severe immunodeficiency, yet in certain cases can lead to autoimmunity. Mutation of the tyrosine kinase ZAP-70 can cause either of these outcomes, yet the limits of its signal transducing capacity are not well defined. To investigate these limits we have made use of mrtless: a chemically induced mutation of Zap70 associated with T-cell deficiency. Unlike cells devoid of ZAP-70, mrtless thymocytes showed partial induction of CD5 and CD69, and were sensitive to TCR stimulation with a dose-response shifted approximately 10-fold. However, essentially no T cells were able to compensate for the mrtless mutation and mature beyond the CD4鈦 CD8鈦 stage. This outcome contrasts with a ZAP-70 Src Homology 2 domain mutant strain, where high-affinity self-reactive TCR are positively selected rather than deleted. We discuss these data with respect to current models of TCR signalling in thymocyte selection.

+view abstract Immunology, PMID: 24266404 2014

Open Access
Bayliss AL, Evans PD

The evolution of the biogenic amine signalling system in vertebrates is unclear. However, insights can be obtained from studying the structures and signalling properties of biogenic amine receptors from the protochordate, amphioxus, which is an invertebrate species that exists at the base of the chordate lineage. Here we describe the signalling properties of AmphiAmR11, an amphioxus (Branchiostoma floridae) G protein-coupled receptor which has structural similarities to vertebrate 伪2-adrenergic receptors but which functionally acts as a D2 dopamine-like receptor when expressed in Chinese hamster ovary -K1 cells. AmphiAmR11 inhibits forskolin-stimulated cyclic AMP levels with tyramine, phenylethylamine and dopamine being the most potent agonists. AmphiAmR11 also increases mitogen-activated protein kinase activity and calcium mobilisation, and in both pathways, dopamine was found to be more potent than tyramine. Thus, differences in the relative effectiveness of various agonists in the different second messenger assay systems suggest that the receptor displays agonist-specific coupling (biased agonism) whereby different agonists stabilize different conformations of the receptor which lead to the enhancement of one signalling pathway over another. The present study provides insights into the evolution of 伪2-adrenergic receptor signalling and support the hypothesis that 伪2-adrenergic receptors evolved from D2-dopamine receptors. The AmphiAmR11 receptor may represent a transition state between D2-dopamine receptors and 伪2-adrenergic receptors.

+view abstract PloS one, PMID: 24265838 2013

Open Access
Amado IF, Berges J, Luther RJ, Mailh茅 MP, Garcia S, Bandeira A, Weaver C, Liston A, Freitas AA Immunology

Many species of bacteria use quorum sensing to sense the amount of secreted metabolites and to adapt their growth according to their population density. We asked whether similar mechanisms would operate in lymphocyte homeostasis. We investigated the regulation of the size of interleukin-2 (IL-2)-producing CD4(+) T cell (IL-2p) pool using different IL-2 reporter mice. We found that in the absence of either IL-2 or regulatory CD4(+) T (T reg) cells, the number of IL-2p cells increases. Administration of IL-2 decreases the number of cells of the IL-2p cell subset and, pertinently, abrogates their ability to produce IL-2 upon in vivo cognate stimulation, while increasing T reg cell numbers. We propose that control of the IL-2p cell numbers occurs via a quorum sensing-like feedback loop where the produced IL-2 is sensed by both the activated CD4(+) T cell pool and by T reg cells, which reciprocally regulate cells of the IL-2p cell subset. In conclusion, IL-2 acts as a self-regulatory circuit integrating the homeostasis of activated and T reg cells as CD4(+) T cells restrain their growth by monitoring IL-2 levels, thereby preventing uncontrolled responses and autoimmunity.

+view abstract The Journal of experimental medicine, PMID: 24249704 2013

PA Latos, M Hemberger Epigenetics

Trophoblast stem cells (TSCs) are a self-renewing stem cell population derived from the early trophoblast lineage, analogous to embryonic stem cells (ESCs) that can be generated from the inner cell mass (ICM) of the mouse blastocyst. In that sense TSCs and ESCs reflect the earliest lineage differentiation event after fertilization. TSCs are characterized by an indefinite proliferation potential and by multipotency, i.e. the ability to differentiate into all the various trophoblast cell types of the placenta. These properties are driven by specific signalling pathways orchestrating characteristic transcriptional outputs. Here we review the recent advances in studying the signalling cascades and the transcriptional regulatory networks that define specification and maintenance of TSCs, and provide a future outlook of TSC research.

+view abstract Placenta, PMID: 24220516 2013

Linterman MA Immunology

Normal ageing is accompanied by a decline in the function of the immune system that causes an increased susceptibility to infections and an impaired response to vaccination in older individuals. This results in an increased disease burden in the aged population, even with good immunisation programmes in place. The decreased response to vaccination is partly due to the diminution of the germinal centre response with age, caused by impaired T-cell help to B cells. Within the germinal centre, T-cell help is provided by a specialised subset of CD4(+) T cells; T follicular helper (Tfh) cells. Tfh cells provide survival and selection signals to germinal centre B cells, allowing them to egress from the germinal centre and become long-live plasma cells or memory B cells, and provide life-long protection against subsequent infection. This review will discuss the cellular and molecular changes in both Tfh cells and germinal centre B cells that occur with advancing age, which result in a smaller germinal centre response and a less effective response to immunisation.

+view abstract Immunology and cell biology, PMID: 24217812 2014

Open Access
Pascall JC, Rotondo S, Mukadam AS, Oxley D, Webster J, Walker SA, Piron J, Carter C, Ktistakis NT, Butcher GW Immunology,Mass Spectrometry

The GIMAPs (GTPases of the immunity-associated proteins) are a family of small GTPases expressed prominently in the immune systems of mammals and other vertebrates. In mammals, studies of mutant or genetically-modified rodents have indicated important roles for the GIMAP GTPases in the development and survival of lymphocytes. No clear picture has yet emerged, however, of the molecular mechanisms by which they perform their function(s). Using biotin tag-affinity purification we identified a major, and highly specific, interaction between the human cytosolic family member GIMAP6 and GABARAPL2, one of the mammalian homologues of the yeast autophagy protein Atg8. Chemical cross-linking studies performed on Jurkat T cells, which express both GIMAP6 and GABARAPL2 endogenously, indicated that the two proteins in these cells readily associate with one another in the cytosol under normal conditions. The GIMAP6-GABARAPL2 interaction was disrupted by deletion of the last 10 amino acids of GIMAP6. The N-terminal region of GIMAP6, however, which includes a putative Atg8-family interacting motif, was not required. Over-expression of GIMAP6 resulted in increased levels of endogenous GABARAPL2 in cells. After culture of cells in starvation medium, GIMAP6 was found to localise in punctate structures with both GABARAPL2 and the autophagosomal marker MAP1LC3B, indicating that GIMAP6 re-locates to autophagosomes on starvation. Consistent with this finding, we have demonstrated that starvation of Jurkat T cells results in the degradation of GIMAP6. Whilst these findings raise the possibility that the GIMAPs play roles in the regulation of autophagy, we have been unable to demonstrate an effect of GIMAP6 over-expression on autophagic flux.

+view abstract PloS one, PMID: 24204963 2013

LE Jensen, G Bultynck, T Luyten, H Amijee, MD Bootman, HL Roderick

Dysregulation of Ca(2+) homeostasis is considered to contribute to the toxic action of the Alzheimer's disease (AD)-associated amyloid-脦虏-peptide (A脦虏). Ca(2+) fluxes across the plasma membrane and release from intracellular stores have both been reported to underlie the Ca(2+) fluxes induced by A脦虏42. Here, we investigated the contribution of Ca(2+) release from the endoplasmic reticulum (ER) to the effects of A脦虏42 upon Ca(2+) homeostasis and the mechanism by which A脦虏42 elicited these effects. Consistent with previous reports, application of soluble oligomeric forms of A脦虏42 induced an elevation in intracellular Ca(2+). The A脦虏42-stimulated Ca(2+) signals persisted in the absence of extracellular Ca(2+) indicating a significant contribution of Ca(2+) release from the ER Ca(2+) store to the generation of these signals. Moreover, inositol 1,4,5-trisphosphate (InsP3) signaling contributed to A脦虏42-stimulated Ca(2+) release. The Ca(2+) mobilizing effect of A脦虏42 was also observed when applied to permeabilized cells deficient in InsP3 receptors, revealing an additional direct effect of A脦虏42 upon the ER, and a mechanism for induction of toxicity by intracellular A脦虏42.

+view abstract Frontiers in molecular neuroscience, PMID: 24204331 2013

Evans PD, Bayliss A, Reale V

Steroid hormones classically mediate their actions by binding to intracellular receptor proteins that migrate to the nucleus and act as transcription factors to change gene expression. However, evidence is now accumulating for rapid, non-genomic effects of steroids. There is considerable controversy over the mechanisms underlying such effects. In a number of cases evidence has been presented for the direct activation of G-protein coupled receptors (GPCRs) by steroids, either at the plasma membrane, or at intracellular locations. Here, we will focus on the non-genomic actions of ecdysteroids on a Drosophila GPCR, DopEcR (CG18314), which can be activated by both ecdysone and the catecholamine, dopamine. We will also point out parallels between this system and the activation of the vertebrate GPCR, GPER1 (GPR30), which is thought to be activated by 17尾-estradiol. We propose that the cellular localization and signalling properties of both DopEcR and GPER1 may be cell specific and depend upon their interactions with both accessory molecules and signalling pathways.

+view abstract General and comparative endocrinology, PMID: 24188886 2014

Open Access
F B眉chel, N Rodriguez, N Swainston, C Wrzodek, T Czauderna, R Keller, F Mittag, M Schubert, M Glont, M Golebiewski, M van Iersel, S Keating, M Rall, M Wybrow, H Hermjakob, M Hucka, DB Kell, W M眉ller, P Mendes, A Zell, C Chaouiya, J Saez-Rodriguez, F Schreiber, C Laibe, A Dr盲ger, N Le Nov猫re Signalling

Systems biology projects and omics technologies have led to a growing number of biochemical pathway models and reconstructions. However, the majority of these models are still created de novo, based on literature mining and the manual processing of pathway data.

+view abstract BMC systems biology, PMID: 24180668 2013

Barrio R, Shea MJ, Carulli J, Lipkow K, Gaul U, Frommer G, Schuh R, J盲ckle H, Kafatos FC

We report the full coding sequence of a new Drosophila gene, spalt-related, which is homologous and adjacent to the region-specific homeotic gene, spalt. Both genes have three widely spaced sets of C2H2 zinc finger motifs, but spalt-related encodes a fourth pair of C-terminal fingers resembling the Xenopus homologue, Xsal-1. The degrees of sequence divergence among all three members of this family are comparable, suggesting that the Drosophila genes originated from an ancient gene duplication. The spalt-related gene is expressed with quantitative variations from mid-embryogenesis (8-12鈥卙) to the adult stage, but not in ovaries or early embryos. Expression is localized to limited parts of the body, including specific cell populations in the nervous system. In the wing disc, spalt and spalt-related are expressed in indistinguishable domains; in the nervous system and some other organs the expression patterns extensively overlap but are not identical, indicating that the genes have partially diverged in terms of developmental regulation. A characteristic central set of zinc fingers specifically binds to an A/T-rich consensus sequence, defining some DNA binding properties of this ancient family of nuclear factors.

+view abstract Development genes and evolution, PMID: 24173589 1996

Osborne CS

The mammalian nucleus is a highly complex structure that carries out a diverse range of functions such as DNA replication, cell division, RNA processing, and nuclear export/import. Many of these activities occur at discrete subcompartments that intersect with specific regions of the genome. Over the past few decades, evidence has accumulated to suggest that RNA transcription also occurs in specialized sites, called transcription factories, that may influence how the genome is organized. There may be certain efficiency benefits to cluster transcriptional activity in this way. However, the clustering of genes at transcription factories may have consequences for genome stability, and increase the susceptibility to recurrent chromosomal translocations that lead to cancer. The relationships between genome organization, transcription, and chromosomal translocation formation will have important implications in understanding the causes of therapy-related cancers.

+view abstract Clinical cancer research : an official journal of the American Association for Cancer Research, PMID: 24166911 2014

Open Access
Cauwe B, Tian L, Franckaert D, Pierson W, Staats KA, Schlenner SM, Liston A Immunology

Loss of 味-associated protein 70 (Zap70) results in severe immunodeficiency in humans and mice because of the critical role of Zap70 in T-cell receptor (TCR) signalling. Here we describe a novel mouse strain generated by N-ethyl-N-nitrosourea mutagenesis, with the reduced protein stability (rps) mutation in Zap70. The A243V rps mutation resulted in decreased Zap70 protein and a reduced duration of TCR-induced calcium responses, equivalent to that induced by a 50% decrease in catalytically active Zap70. The reduction of signalling through Zap70 was insufficient to substantially perturb thymic differentiation of conventional CD4 and CD8 T cells, although Foxp3(+) regulatory T cells demonstrated altered thymic production and peripheral homeostasis. Despite the mild phenotype, the Zap70(A243V) variant lies just above the functional threshold for TCR signalling competence, as T cells relying on only a single copy of the Zap70(rps) allele for TCR signalling demonstrated no intracellular calcium response to TCR stimulation. This addition to the Zap70 allelic series indicates that a rate-limiting threshold for Zap70 protein levels exists at which signalling capacity switches from nearly intact to effectively null.

+view abstract Immunology, PMID: 24164480 2014

Open Access
Iurlaro M, Ficz G, Oxley D, Raiber EA, Bachman M, Booth MJ, Andrews S, Balasubramanian S, Reik W Epigenetics,Bioinformatics

DNA methylation (5mC) plays important roles in epigenetic regulation of genome function. Recently, TET hydroxylases have been found to oxidise 5mC to hydroxymethylcytosine (5hmC), formylcytosine (5fC) and carboxylcytosine (5caC) in DNA. These derivatives have a role in demethylation of DNA but in addition may have epigenetic signaling functions in their own right. A recent study identified proteins which showed preferential binding to 5-methylcytosine (5mC) and its oxidised forms, where readers for 5mC and 5hmC showed little overlap, and proteins bound to further oxidation forms were enriched for repair proteins and transcription regulators. We extend this study by using promoter sequences as baits and compare protein binding patterns to unmodified or modified cytosine using DNA from mouse embryonic stem cell extracts.

+view abstract Genome biology, PMID: 24156278 2013

Open Access
I Angulo, O Vadas, F Gar莽on, E Banham-Hall, V Plagnol, TR Leahy, H Baxendale, T Coulter, J Curtis, C Wu, K Blake-Palmer, O Perisic, D Smyth, M Maes, C Fiddler, J Juss, D Cilliers, G Markelj, A Chandra, G Farmer, A Kielkowska, J Clark, S Kracker, M Debr茅, C Picard, I Pellier, N Jabado, JA Morris, G Barcenas-Morales, A Fischer, L Stephens, P Hawkins, JC Barrett, M Abinun, M Clatworthy, A Durandy, R Doffinger, E Chilvers, AJ Cant, D Kumararatne, K Okkenhaug, RL Williams, A Condliffe, S Nejentsev Immunology

Genetic mutations cause primary immunodeficiencies (PIDs), which predispose to infections. Here we describe Activated PI3K-脦麓 Syndrome (APDS), a PID associated with a dominant gain-of-function mutation in which lysine replaced glutamic acid at residue 1021 (E1021K) in the p110脦麓 protein, the catalytic subunit of phosphoinositide 3-kinase 脦麓 (PI3K脦麓), encoded by the PIK3CD gene. We found E1021K in 17 patients from seven unrelated families, but not among 3346 healthy subjects. APDS was characterized by recurrent respiratory infections, progressive airway damage, lymphopenia, increased circulating transitional B cells, increased immunoglobulin M and reduced immunoglobulin G2 levels in serum and impaired vaccine responses. The E1021K mutation enhanced membrane association and kinase activity of p110脦麓. Patient-derived lymphocytes had increased levels of phosphatidylinositol 3,4,5-trisphosphate and phosphorylated AKT protein and were prone to activation-induced cell death. Selective p110脦麓 inhibitors IC87114 and GS-1101 reduced the activity of the mutant enzyme in vitro, which suggested a therapeutic approach for patients with APDS.

+view abstract Science (New York, N.Y.), PMID: 24136356 2013

AL Ashford, D Oxley, J Kettle, K Hudson, S Guichard, SJ Cook, PA Lochhead Signalling,Mass Spectrometry

DYRK1B (dual-specificity tyrosine phosphorylation-regulated kinase 1B) is amplified in certain cancers and may be an oncogene; however, our knowledge of DYRK1B has been limited by the lack of selective inhibitors. In the present study we describe AZ191, a potent small molecule inhibitor that selectively inhibits DYRK1B in vitro and in cells. CCND1 (cyclin D1), a key regulator of the mammalian G1-S-phase transition, is phosphorylated on Thr(286) by GSK3脦虏 (glycogen synthase kinase 3脦虏) to promote its degradation. DYRK1B has also been proposed to promote CCND1 turnover, but was reported to phosphorylate Thr(288) rather than Thr(286). Using in vitro kinase assays, phospho-specific immunoblot analysis and MS in conjunction with AZ191 we now show that DYRK1B phosphorylates CCND1 at Thr(286), not Thr(288), in vitro and in cells. In HEK (human embryonic kidney)-293 and PANC-1 cells (which exhibit DYRK1B amplification) DYRK1B drives Thr(286) phosphorylation and proteasome-dependent turnover of CCND1 and this is abolished by AZ191 or DYRK1B RNAi, but not by GSK3脦虏 inhibitors or GSK3脦虏 RNAi. DYRK1B expression causes a G1-phase cell-cycle arrest, but overexpression of CCND1 (wild-type or T286A) fails to overcome this; indeed, DYRK1B also promotes the expression of p21CIP1 (21 kDa CDK-interacting protein 1) and p27KIP1 (CDK-inhibitory protein 1). The results of the present study demonstrate for the first time that DYRK1B is a novel Thr(286)-CCND1 kinase that acts independently of GSK3脦虏 to promote CCND1 degradation. Furthermore, we anticipate that AZ191 may prove useful in defining further substrates and biological functions of DYRK1B.

+view abstract The Biochemical journal, PMID: 24134204 2014

Open Access
C Evans, SJ Cook, MP Coleman, J Gilley Signalling

Wallerian degeneration is delayed when sufficient levels of proteins with NMNAT activity are maintained within axons after injury. This has been proposed to form the basis of 'slow Wallerian degeneration' (Wld (S)), a neuroprotective phenotype conferred by an aberrant fusion protein, Wld(S). Proteasome inhibition also delays Wallerian degeneration, although much less robustly, with stabilization of NMNAT2 likely to play a key role in this mechanism. The pan-MEK inhibitor U0126 has previously been shown to reverse the axon-protective effects of proteasome inhibition, suggesting that MEK-ERK signaling plays a role in delayed Wallerian degeneration, in addition to its established role in promoting neuronal survival. Here we show that whilst U0126 can also reverse Wld(S)-mediated axon protection, more specific inhibitors of MEK1/2 and MEK5, PD184352 and BIX02189, have no significant effect on the delay to Wallerian degeneration in either situation, whether used alone or in combination. This suggests that an off-target effect of U0126 is responsible for reversion of the axon protective effects of Wld(S) expression or proteasome inhibition, rather than inhibition of MEK1/2-ERK1/2 or MEK5-ERK5 signaling. Importantly, this off-target effect does not appear to result in alterations in the stabilities of either Wld(S) or NMNAT2.

+view abstract PloS one, PMID: 24124570 2013

Open Access
Juvin V, Malek M, Anderson KE, Dion C, Chessa T, Lecureuil C, Ferguson GJ, Cosulich S, Hawkins PT, Stephens LR Signalling

We have addressed the differential roles of class I Phosphoinositide 3-kinases (PI3K) in human breast-derived MCF10a (and iso-genetic derivatives) and MDA-MB 231 and 468 cells. Class I PI3Ks are heterodimers of p110 catalytic (伪, 尾, 未 and 纬) and p50-101 regulatory subunits and make the signaling lipid, phosphatidylinositol (3,4,5)-trisphosphate (PtdIns(3,4,5)P3) that can activate effectors, eg protein kinase B (PKB), and responses, eg migration. The PtdIns(3,4,5)P3-3-phosphatase and tumour-suppressor, PTEN inhibits this pathway. p110伪, but not other p110s, has a number of onco-mutant variants that are commonly found in cancers. mRNA-seq data shows that MCF10a cells express p110尾>伪>未 with undetectable p110纬. Despite this, EGF-stimulated phosphorylation of PKB depended upon p110伪-, but not 尾- or 未- activity. EGF-stimulated chemokinesis, but not chemotaxis, was also dependent upon p110伪, but not 尾- or 未- activity. In the presence of single, endogenous alleles of onco-mutant p110伪 (H1047R or E545K), basal, but not EGF-stimulated, phosphorylation of PKB was increased and the effect of EGF was fully reversed by p110伪 inhibitors. Cells expressing either onco-mutant displayed higher basal motility and EGF-stimulated chemokinesis.This latter effect was, however, only partially-sensitive to PI3K inhibitors. In PTEN(-/-) cells, basal and EGF-stimulated phosphorylation of PKB was substantially increased, but the p110-dependency was variable between cell types. In MDA-MB 468s phosphorylation of PKB was significantly dependent on p110尾, but not 伪- or 未- activity; in PTEN(-/-) MCF10a it remained, like the parental cells, p110伪-dependent. Surprisingly, loss of PTEN suppressed basal motility and EGF-stimulated chemokinesis. These results indicate that; p110伪 is required for EGF signaling to PKB and chemokinesis, but not chemotaxis; onco-mutant alleles of p110伪 augment signaling in the absence of EGF and may increase motility, in part, via acutely modulating PI3K-activity-independent mechanisms. Finally, we demonstrate that there is not a universal mechanism that up-regulates p110尾 function in the absence of PTEN.

+view abstract PloS one, PMID: 24124465 2013

Open Access
Kielkowska A, Niewczas I, Anderson KE, Durrant TN, Clark J, Stephens LR, Hawkins PT Signalling

The phosphoinositide family of phospholipids, defined here as PtdIns, PtdIns3P, PtdIns4P, PtdIns5P, PtdIns(3,4)P2, PtdIns(3,5)P2, PtdIns(4,5)P2 and PtdIns(3,4,5)P3, play pivotal roles in organising the location and activity of many different proteins acting on biological membranes, including those involved in vesicle and protein trafficking through the endolysosomal system and receptor signal transduction at the plasma membrane. Accurate measurement of the cellular levels of these lipids, particularly the more highly phosphorylated species, is hampered by their high polarity and low cellular concentrations. Recently, much progress has been made in using mass spectrometry to measure many different lipid classes in parallel, an approach generally referred to as 'lipidomics'. Unfortunately, the acidic nature of highly phosphorylated phosphoinositides makes them difficult to measure using these methods, because they yield low levels of useful ions; this is particularly the case with PtdIns(3,4,5)P3. We have solved some of these problems by methylating the phosphate groups of these lipids with TMS-diazomethane and describe a simple, integrated approach to measuring PtdIns, PtdInsP, PtdInsP2 and PtdInsP3 classes of lipids, in parallel with other phospholipid species, in cell and tissue extracts. This methodology is sensitive, accurate and robust, and also yields fatty-acyl compositions, suggesting it can be used to further our understanding of both the normal and pathophysiological roles of these important lipids.

+view abstract Advances in biological regulation, PMID: 24120934 2014

Collin P,Nashchekina O,Walker R,Pines J Flow Cytometry

The spindle assembly checkpoint (SAC) is essential in mammalian mitosis to ensure the equal segregation of sister chromatids. The SAC generates a mitotic checkpoint complex (MCC) to prevent the anaphase-promoting complex/cyclosome (APC/C) from targeting key mitotic regulators for destruction until all of the chromosomes have attached to the mitotic apparatus. A single unattached kinetochore can delay anaphase for several hours, but how it is able to block the APC/C throughout the cell is not understood. Present concepts of the SAC posit that either it exhibits an all-or-nothing response or there is a minimum threshold sufficient to block the APC/C (ref. 7). Here, we have used gene targeting to measure SAC activity, and find that it does not have an all-or-nothing response. Instead, the strength of the SAC depends on the amount of MAD2 recruited to kinetochores and on the amount of MCC formed. Furthermore, we show that different drugs activate the SAC to different extents, which may be relevant to their efficacy in chemotherapy.

+view abstract Nature cell biology, PMID: 24096242 2013

Open Access
Sukumar M,Liu J,Ji Y,Subramanian M,Crompton JG,Yu Z,Roychoudhuri R,Palmer DC,Muranski P,Karoly ED,Mohney RP,Klebanoff CA,Lal A,Finkel T,Restifo NP,Gattinoni L Immunology

Naive CD8+ T cells rely upon oxidation of fatty acids as a primary source of energy. After antigen encounter, T cells shift to a glycolytic metabolism to sustain effector function. It is unclear, however, whether changes in glucose metabolism ultimately influence the ability of activated T cells to become long-lived memory cells. We used a fluorescent glucose analog, 2-NBDG, to quantify glucose uptake in activated CD8+ T cells. We found that cells exhibiting limited glucose incorporation had a molecular profile characteristic of memory precursor cells and an increased capacity to enter the memory pool compared with cells taking up high amounts of glucose. Accordingly, enforcing glycolytic metabolism by overexpressing the glycolytic enzyme phosphoglycerate mutase-1 severely impaired the ability of CD8+ T cells to form long-term memory. Conversely, activation of CD8+ T cells in the presence of an inhibitor of glycolysis, 2-deoxyglucose, enhanced the generation of memory cells and antitumor functionality. Our data indicate that augmenting glycolytic flux drives CD8+ T cells toward a terminally differentiated state, while its inhibition preserves the formation of long-lived memory CD8+ T cells. These results have important implications for improving the efficacy of T cell-based therapies against chronic infectious diseases and cancer.

+view abstract The Journal of clinical investigation, PMID: 24091329 2013

Open Access
Du CJ, Hawkins PT, Stephens LR, Bretschneider T Signalling

Fundamental cellular processes such as cell movement, division or food uptake critically depend on cells being able to change shape. Fast acquisition of three-dimensional image time series has now become possible, but we lack efficient tools for analysing shape deformations in order to understand the real three-dimensional nature of shape changes.

+view abstract BMC bioinformatics, PMID: 24090312 2013