小猪视频

 

Filter

Publications

The 小猪视频 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Sipthorp J, Lebraud H, Gilley R, Kidger A, Okkenhaug H, Saba-El-Leil MK, Meloche S, Caunt CJ, Cook S, Heightman TD Signalling,Imaging

The RAS-RAF-MEK-ERK pathway has been intensively studied in oncology with RAS known to be mutated in ~30% of all human cancers. The recent emergence of ERK1/2 inhibitors and their ongoing clinical investigation demands a better understanding of ERK1/2 behaviour following small molecule inhibition. Although fluorescent fusion proteins and fluorescent antibodies are well-established methods to visualise proteins, we show that ERK1/2 can be visualised via a less invasive approach based on a two-step process using Inverse Electron Demand Diels-Alder cycloaddition. Our previously reported TCO-tagged covalent ERK1/2 inhibitor was used in a series of imaging experiments following a click reaction with a tetrazine-tagged fluorescent dye. Although limitations were encountered with this approach, endogenous ERK1/2 was successfully imaged in cells and 'on target' staining was confirmed by overexpressing DUSP5, a nuclear ERK1/2 phosphatase which anchors ERK1/2 in the nucleus.

+view abstract Bioconjugate chemistry, PMID: 28449575 2017

Open Access
Broos K, Keyaerts M, Lecocq Q, Renmans D, Nguyen T, Escors D, Liston A, Raes G, Breckpot K, Devoogdt N Immunology

Blockade of the inhibitory PD-1/PD-L1 immune checkpoint axis is a promising cancer treatment. Nonetheless, a significant number of patients and malignancies do not respond to this therapy. To develop a screen for response to PD-1/PD-L1 inhibition, it is critical to develop a non-invasive tool to accurately assess dynamic immune checkpoint expression. Here we evaluated non-invasive SPECT/CT imaging of PD-L1 expression, in murine tumor models with varying PD-L1 expression, using high affinity PD-L1-specific nanobodies (Nbs). We generated and characterized 37 Nbs recognizing mouse PD-L1. Among those, four Nbs C3, C7, E2 and E4 were selected and evaluated for preclinical imaging of PD-L1 in syngeneic mice. We performed SPECT/CT imaging in wild type versus PD-L1 knock-out mice, using Technetium-99m (99mTc) labeled Nbs. Nb C3 and E2 showed specific antigen binding and beneficial biodistribution. Through the use of CRISPR/Cas9 PD-L1 knock-out TC-1 lung epithelial cell lines, we demonstrate that SPECT/CT imaging using Nb C3 and E2 identifies PD-L1 expressing tumors, but not PD-L1 non-expressing tumors, thereby confirming the diagnostic potential of the selected Nbs. In conclusion, these data show that Nbs C3 and E2 can be used to non-invasively image PD-L1 levels in the tumor, with the strength of the signal correlating with PD-L1 levels. These findings warrant further research into the use of Nbs as a tool to image inhibitory signals in the tumor environment.

+view abstract Oncotarget, PMID: 28410210 2017

Open Access
Stubbs TM, Bonder MJ, Stark AK, Krueger F, Bolland D, Butcher G, Chandra T, Clark SJ, Corcoran A, Eckersley-Maslin M, Field L, Frising UC, Gilbert C, Guedes J, Hernando-Herraez I, Houseley J, Kemp F, MacQueen A, Okkenhaug K, Rhoades M, Santbergen MJC, Stebegg M, von Meyenn F, Stegle O, Reik W Epigenetics,Bioinformatics

DNA聽methylation changes at a discrete set of sites in the human genome are predictive of chronological and biological age. However, it is not known whether these changes are causative or a consequence of an underlying ageing process. It has also not been shown whether this epigenetic clock is unique to humans or conserved in the more experimentally tractable mouse.

+view abstract Genome biology, PMID: 28399939 2017

Angermueller C, Lee HJ, Reik W, Stegle O Epigenetics

Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However, current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data from five cell types generated using alternative sequencing protocols. DeepCpG yields substantially more accurate predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby providing insights into how sequence composition affects methylation variability.

+view abstract Genome biology, PMID: 28395661 2017

Open Access
Dalle Pezze P, Le Nov猫re N Signalling

The rapid growth of the number of mathematical models in Systems Biology fostered the development of many tools to simulate and analyse them. The reliability and precision of these tasks often depend on multiple repetitions and they can be optimised if executed as pipelines. In addition, new formal analyses can be performed on these repeat sequences, revealing important insights about the accuracy of model predictions.

+view abstract BMC systems biology, PMID: 28395655 2017

Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ, Critchley HO, Simons BD, Hemberger M, Koo BK, Moffett A, Burton GJ Epigenetics

In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in聽vitro. We adapted conditions used to establish human adult stem-cell-derived organoid cultures to generate three-dimensional cultures of normal and decidualized human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early聽gestation.

+view abstract Nature cell biology, PMID: 28394884 2017

Open Access
Newman R, Ahlfors H, Saveliev A, Galloway A, Hodson DJ, Williams R, Besra GS, Cunningham AF, Bell SE, Turner M Immunology

RNA-binding proteins of the ZFP36 family are best known for inhibiting the expression of cytokines through binding to AU-rich elements in the 3' untranslated region and promoting mRNA decay. Here we identified an indispensable role for ZFP36L1 as the regulator of a post-transcriptional hub that determined the identity of marginal-zone B cells by promoting their proper localization and survival. ZFP36L1 controlled a gene-expression program related to signaling, cell adhesion and locomotion; it achieved this in part by limiting expression of the transcription factors KLF2 and IRF8, which are known to enforce the follicular B cell phenotype. These mechanisms emphasize the importance of integrating transcriptional and post-transcriptional processes by RNA-binding proteins for maintaining cellular identity among closely related cell types.

+view abstract Nature immunology, PMID: 28394372 2017

Open Access
Mifsud B, Martincorena I, Darbo E, Sugar R, Schoenfelder S, Fraser P, Luscombe NM Epigenetics

Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).

+view abstract PloS one, PMID: 28379994 2017

Open Access
Hahn O, Gr枚nke S, Stubbs TM, Ficz G, Hendrich O, Krueger F, Andrews S, Zhang Q, Wakelam MJ, Beyer A, Reik W, Partridge L Epigenetics,Lipidomics

Dietary restriction (DR), a reduction in food intake without malnutrition, increases most aspects of health during aging and extends lifespan in diverse species, including rodents. However, the mechanisms by which DR interacts with the aging process to improve health in old age are poorly understood. DNA methylation could play an important role in mediating the effects of DR because it is sensitive to the effects of nutrition and can affect gene expression memory over time.

+view abstract Genome biology, PMID: 28351387 2017

Kiselev VY, Kirschner K, Schaub MT, Andrews T, Yiu A, Chandra T, Natarajan KN, Reik W, Barahona M, Green AR, Hemberg M Epigenetics

Single-cell RNA-seq enables the quantitative characterization of cell types based on global transcriptome profiles. We present single-cell consensus clustering (SC3), a user-friendly tool for unsupervised clustering, which achieves high accuracy and robustness by combining multiple clustering solutions through a consensus approach (http://bioconductor.org/packages/SC3). We demonstrate that SC3 is capable of identifying subclones from the transcriptomes of neoplastic cells collected from patients.

+view abstract Nature methods, PMID: 28346451 2017

Open Access
Collier AJ, Panula SP, Schell JP, Chovanec P, Plaza Reyes A, Petropoulos S, Corcoran AE, Walker R, Douagi I, Lanner F, Rugg-Gunn PJ Epigenetics,Flow Cytometry

Human pluripotent stem cells (PSCs) exist in naive and primed states and provide important models to investigate the earliest stages of human development. Naive cells can be obtained through primed-to-naive resetting, but there are no reliable methods to prospectively isolate unmodified naive cells during this process. Here we report comprehensive profiling of cell surface proteins by flow cytometry in naive and primed human PSCs. Several naive-specific, but not primed-specific, proteins were also expressed by pluripotent cells in the human preimplantation embryo. The upregulation of naive-specific cell surface proteins during primed-to-naive resetting enabled the isolation and characterization of live naive cells and intermediate cell populations. This analysis revealed distinct transcriptional and X chromosome inactivation changes associated with the early and late stages of naive cell formation. Thus, identification of state-specific proteins provides a robust set of molecular markers to define the human PSC state and allows new insights into the molecular events leading to naive cell resetting.

+view abstract Cell stem cell, PMID: 28343983 2017

Open Access
Berry S, Dean C, Howard M Epigenetics

Genes targeted by Polycomb repressive complex 2 (PRC2) are regulated in cis by chromatin modifications and also in trans by diffusible regulators such as transcription factors. Here, we introduce a mathematical model in which transcription directly antagonizes Polycomb silencing, thereby linking these cis- and trans-regulatory inputs to gene expression. The model is parameterized by recent experimental data showing that PRC2-mediated repressive chromatin modifications accumulate extremely slowly. The model generates self-perpetuating, bistable active and repressed chromatin states that persist through DNA replication, thereby ensuring high-fidelity transmission of the current chromatin state. However, sufficiently strong, persistent activation or repression of transcription promotes switching between active and repressed chromatin states. We observe that when chromatin modification dynamics are slow, transient pulses of transcriptional activation or repression are effectively filtered, such that epigenetic memory is retained. Noise filtering thus depends on slow chromatin dynamics and may represent an important function of PRC2-based regulation.

+view abstract Cell systems, PMID: 28342717

Open Access
Freire-Pritchett P, Schoenfelder S, V谩rnai C, Wingett SW, Cairns J, Collier AJ, Garc铆a-V铆lchez R, Furlan-Magaril M, Osborne CS, Fraser PJ, Rugg-Gunn PJ, Spivakov M Epigenetics

Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements, and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells.

+view abstract eLife, PMID: 28332981 2017

Denton AE, Linterman MA Immunology

Secondary lymphoid organs are organized into distinct zones, governed by different types of mesenchymal stromal cells. These stromal cell subsets are critical for the generation of protective humoral immunity because they direct the migration of, and interaction between, multiple immune cell types to form the germinal centre. The germinal centre response generates long-lived antibody-secreting plasma cells and memory B cells which can provide long-term protection against re-infection. Stromal cell subsets mediate this response through control of immune cell trafficking, activation, localization and antigen access within the secondary lymphoid organ. Further, distinct populations of stromal cells underpin the delicate spatial organization of immune cells within the germinal centre. Because of this, the interactions between immune cells and stromal cells in secondary lymphoid organs are fundamental to the germinal centre response. Herein we review how this unique relationship leads to effective germinal centre responses.

+view abstract Current opinion in immunology, PMID: 28319729 2017

Moens L, Picard C, Shahrooei M, Wuyts G, Liston A, Fischer A, Bossuyt X Immunology

+view abstract Journal of clinical immunology, PMID: 28303442 2017

Open Access
Jacquin E, Leclerc-Mercier S, Judon C, Blanchard E, Fraitag S, Florey O Signalling

The modulation of canonical macroautophagy/autophagy for therapeutic benefit is an emerging strategy of medical and pharmaceutical interest. Many drugs act to inhibit autophagic flux by targeting lysosome function, while others were developed to activate the pathway. Here, we report the surprising finding that many therapeutically relevant autophagy modulators with lysosomotropic and ionophore properties, classified as inhibitors of canonical autophagy, are also capable of activating a parallel noncanonical autophagy pathway that drives MAP1LC3/LC3 lipidation on endolysosomal membranes. Further, we provide the first evidence supporting drug-induced noncanonical autophagy in vivo using the local anesthetic lidocaine and human skin biopsies. In addition, we find that several published inducers of autophagy and mitophagy are also potent activators of noncanonical autophagy. Together, our data raise important issues regarding the interpretation of LC3 lipidation data and the use of autophagy modulators, and highlight the need for a greater understanding of the functional consequences of noncanonical autophagy.

+view abstract Autophagy, PMID: 28296541 2017

Open Access
Sewitz SA, Fahmi Z, Lipkow K

The linear molecules of DNA that constitute a eukaryotic genome have to be carefully organised within the nucleus to be able to correctly direct gene expression. Microscopy and chromosome capture methods have revealed a hierarchical organisation into territories, domains and subdomains that ensure the accessibility of expressed genes and eventually chromatin loops that serve to bring gene enhancers into proximity of their target promoters. A rapidly growing number of genome-wide datasets and their analyses have given detailed information into the conformation of the entire genome, allowing evolutionary insights, observations of genome rearrangements during development and the identification of new gene-to-disease associations. The field is now progressing into using computational models of genome dynamics to investigate the mechanisms that shape genome structure, placing increasing importance on the role of chromatin associated proteins for this process.

+view abstract Current opinion in structural biology, PMID: 28284913 2017

Open Access
Gyori D, Chessa T, Hawkins PT, Stephens LR Signalling

Phosphoinositide 3-kinases (PI3Ks) are a diverse family of enzymes which regulate various critical biological processes, such as cell proliferation and survival. Class (I) PI3Ks (PI3K伪, PI3K尾, PI3K纬 and PI3K未) mediate the phosphorylation of the inositol ring at position D3 leading to the generation of PtdIns(3,4,5)P3. PtdIns(3,4,5)P3 can be dephosphorylated by several phosphatases, of which the best known is the 3-phosphatase PTEN (phosphatase and tensin homolog). The Class (I) PI3K pathway is frequently disrupted in human cancers where mutations are associated with increased PI3K-activity or loss of PTEN functionality within the tumor cells. However, the role of PI3Ks in the tumor stroma is less well understood. Recent evidence suggests that the white blood cell-selective PI3K纬 and PI3K未 isoforms have an important role in regulating the immune-suppressive, tumor-associated myeloid cell and regulatory T cell subsets, respectively, and as a consequence are also critical for solid tumor growth. Moreover, PI3K伪 is implicated in the direct regulation of tumor angiogenesis, and dysregulation of the PI3K pathway in stromal fibroblasts can also contribute to cancer progression. Therefore, pharmacological inhibition of the Class (I) PI3K family in the tumor microenvironment can be a highly attractive anti-cancer strategy and isoform-selective PI3K inhibitors may act as potent cancer immunotherapeutic and anti-angiogenic agents.

+view abstract Cancers, PMID: 28273837 2017

Aymard F, Aguirrebengoa M, Guillou E, Javierre BM, Bugler B, Arnould C, Rocher V, Iacovoni JS, Biernacka A, Skrzypczak M, Ginalski K, Rowicka M, Fraser P, Legube G

The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells.

+view abstract Nature structural & molecular biology, PMID: 28263325 2017

Open Access
Di Stefano M, Loreto A, Orsomando G, Mori V, Zamporlini F, Hulse RP, Webster J, Donaldson LF, Gering M, Raffaelli N, Coleman MP, Gilley J, Conforti L Signalling

Axons require the axonal NAD-synthesizing enzyme NMNAT2 to survive. Injury or genetically induced depletion of NMNAT2 triggers axonal degeneration or defective axon growth. We have previously proposed that axonal NMNAT2 primarily promotes axon survival by maintaining low levels of its substrate NMN rather than generating NAD; however, this is still debated. NMN deamidase, a bacterial enzyme, shares NMN-consuming activity with NMNAT2, but not NAD-synthesizing activity, and it delays axon degeneration in primary neuronal cultures. Here we show that NMN deamidase can also delay axon degeneration in zebrafish larvae and in聽transgenic mice. Like overexpressed NMNATs, NMN deamidase reduces NMN accumulation in injured mouse sciatic nerves and preserves some axons for up to three weeks, even when expressed at a low level. Remarkably, NMN deamidase also rescues axonal outgrowth and perinatal lethality in a dose-dependent manner in mice lacking NMNAT2. These data further support a pro-degenerative effect of accumulating NMN in axons in聽vivo. The NMN deamidase mouse will be an important tool to further probe the mechanisms underlying Wallerian degeneration and its prevention.

+view abstract Current biology : CB, PMID: 28262487 2017

Iurlaro M, von Meyenn F, Reik W Epigenetics

The molecular pathways that regulate gain and loss of DNA methylation during mammalian development need to be tightly balanced to maintain a physiological equilibrium. Here we explore the relative contributions of the different pathways and enzymatic activities involved in methylation homeostasis in the context of genome-wide and locus-specific epigenetic reprogramming in mammals. An adaptable epigenetic machinery allows global epigenetic reprogramming to concur with local maintenance of critical epigenetic memory in the genome, and appears to regulate the tempo of global reprogramming in different cell lineages and species.

+view abstract Current opinion in genetics & development, PMID: 28260631 2017

Open Access
Frenk S, Pizza G, Walker RV, Houseley J Epigenetics,Flow Cytometry

Animals, plants and fungi undergo an aging process with remarkable physiological and molecular similarities, suggesting that aging has long been a fact of life for eukaryotes and one to which our unicellular ancestors were subject. Key biochemical pathways that impact longevity evolved prior to multicellularity, and the interactions between these pathways and the aging process therefore emerged in ancient single-celled eukaryotes. Nevertheless, we do not fully understand how aging impacts the fitness of unicellular organisms, and whether such cells gain a benefit from modulating rather than simply suppressing the aging process. We hypothesized that age-related loss of fitness in single-celled eukaryotes may be counterbalanced, partly or wholly, by a transition from a specialist to a generalist life-history strategy that enhances adaptability to other environments. We tested this hypothesis in budding yeast using competition assays and found that while young cells are more successful in glucose, highly aged cells outcompete young cells on other carbon sources such as galactose. This occurs because aged yeast divide faster than young cells in galactose, reversing the normal association between age and fitness. The impact of aging on single-celled organisms is therefore complex and may be regulated in ways that anticipate changing nutrient availability. We propose that pathways connecting nutrient availability with aging arose in unicellular eukaryotes to capitalize on age-linked diversity in growth strategy and that individual cells in higher eukaryotes may similarly diversify during aging to the detriment of the organism as a whole.

+view abstract Aging cell, PMID: 28247585 2017

Open Access
Dooley J, Lagou V, Dresselaers T, van Dongen KA, Himmelreich U, Liston A Immunology

Pancreatic cancer has an extremely poor prognosis, largely due to a poor record for early detection. Known risk factors for pancreatic cancer include obesity, diet, and diabetes, implicating glucose consumption and regulation as a key player. The role of artificial sweeteners may therefore be pertinent to disease kinetics. The oncogenic impact of artificial sweeteners is a highly controversial area. Aspartame, one of the most studied food additives, is widely recognized as being generally safe, although there are still specific areas where research is incomplete due to study limitations. Stevia, by contrast, has been the subject of relatively few studies, and the potential health benefits are based on extrapolation rather than direct testing. Here, we used longitudinal tracking of pancreatic acinar carcinoma development, growth, and lethality in a sensitized mouse model. Despite exposure to aspartame and stevia from the stage onward, we found no disease modification activity, in either direction. These results contribute to the data on aspartame and stevia safety, while also reducing confidence in several of the purported health benefits.

+view abstract Frontiers in oncology, PMID: 28232906 2017

Galloway A, Turner M Immunology

Lymphocytes undergo dynamic changes in gene expression as they develop from progenitor cells lacking antigen receptors, to mature cells that are prepared to mount immune responses. While transcription factors have established roles in lymphocyte development, they act in concert with post-transcriptional and post-translational regulators to determine the proteome. Furthermore, the post-transcriptional regulation of RNA regulons consisting of mRNAs whose protein products act cooperatively allows RNA binding proteins to exert their effects at multiple points in a pathway. Here, we review recent evidence demonstrating the importance of RNA binding proteins that control the cell cycle in lymphocyte development and discuss the implications for tumorigenesis. For further resources related to this article, please visit the WIREs website.

+view abstract Wiley interdisciplinary reviews. RNA, PMID: 28231639 2017