СƵ

 

Filter

Publications

The СƵ Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly‐funded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
von Meyenn F, Berrens RV, Andrews S, Santos F, Collier AJ, Krueger F, Osorno R, Dean W, Rugg-Gunn PJ, Reik W Epigenetics,Bioinformatics

Primordial germ cell (PGC) development is characterized by global epigenetic remodeling, which resets genomic potential and establishes an epigenetic ground state. Here we recapitulate PGC specification in vitro from naive embryonic stem cells and characterize the early events of epigenetic reprogramming during the formation of the human and mouse germline. Following rapid de novo DNA methylation during priming to epiblast-like cells, methylation is globally erased in PGC-like cells. Repressive chromatin marks (H3K9me2/3) and transposable elements are enriched at demethylation-resistant regions, while active chromatin marks (H3K4me3 or H3K27ac) are more prominent at regions that demethylate faster. The dynamics of specification and epigenetic reprogramming show species-specific differences, in particular markedly slower reprogramming kinetics in the human germline. Differences in developmental kinetics may be explained by differential regulation of epigenetic modifiers. Our work establishes a robust and faithful experimental system of the early events of epigenetic reprogramming and regulation in the germline.

+view abstract Developmental cell, PMID: 27728778 2016

Open Access
Manifava M, Smith M, Rotondo S, Walker S, Niewczas I, Zoncu R, Clark J, Ktistakis NT Signalling,Imaging

Amino acids are essential activators of mTORC1 via a complex containing RAG GTPases, RAGULATOR and the vacuolar ATPase. Sensing of amino acids causes translocation of mTORC1 to lysosomes, an obligate step for activation. To examine the spatial and temporal dynamics of this translocation, we used live imaging of the mTORC1 component RAPTOR and a cell permeant fluorescent analogue of di-leucine methyl ester. Translocation to lysosomes is a transient event, occurring within 2 min of aa addition and peaking within 5 min. It is temporally coupled with fluorescent leucine appearance in lysosomes and is sustained in comparison to aa stimulation. Sestrin2 and the vacuolar ATPase are negative and positive regulators of mTORC1 activity in our experimental system. Of note, phosphorylation of canonical mTORC1 targets is delayed compared to lysosomal translocation suggesting a dynamic and transient passage of mTORC1 from the lysosomal surface before targetting its substrates elsewhere.

+view abstract eLife, PMID: 27725083 2016

Open Access
Brewster RC, Gavins GC, Günthardt B, Farr S, Webb KM, Voigt P, Hulme AN Epigenetics

Rapid, site-selective modification of cysteine residues with chloromethyl-triazole derivatives generates pseudo-acyl sLys motifs, mimicking important post-translational modifications. Near-native biotinylation of peptide and protein substrates is shown to be site-selective and modified histone H4 retains functional activity.

+view abstract Chemical communications (Cambridge, England), PMID: 27722332

Open Access
Put K, Vandenhaute J, Avau A, van Nieuwenhuijze A, Brisse E, Dierckx T, Rutgeerts O, Garcia-Perez JE, Toelen J, Waer M, Leclercq G, Goris A, Van Weyenbergh J, Liston A, De Somer L, Wouters CH, Matthys P Immunology

Systemic juvenile idiopathic arthritis (JIA) is an immunoinflammatory disease characterized by arthritis and systemic manifestations. The role of natural killer (NK) cells in the pathogenesis of systemic JIA remains unclear. The purpose of this study was to perform a comprehensive analysis of NK cell phenotype and functionality in patients with systemic JIA.

+view abstract Arthritis & rheumatology (Hoboken, N.J.), PMID: 27696741 2017

Liston A, Carr EJ, Linterman MA Immunology

Immune responses demonstrate a high level of intra-species variation, compensating for the specialization capacity of pathogens. The recent advent of in-depth immune phenotyping projects in large-scale cohorts has allowed a first look into the factors that shape the inter-individual diversity of the human immune system. Genetic approaches have identified genetic diversity as drivers of 20-40% of the variation between the immune systems of individuals. The remaining 60-80% is shaped by intrinsic factors, with age being the predominant factor, as well as by environmental influences, where cohabitation and chronic viral infections were identified as key mediators. We review and integrate the recent in-depth large-scale studies on human immune diversity and its potential impact on health. VIDEO ABSTRACT.

+view abstract Trends in immunology, PMID: 27693120 2016

Liston A, Carr EJ, Linterman MA Immunology

Immune responses demonstrate a high level of intra-species variation, compensating for the specialization capacity of pathogens. The recent advent of in-depth immune phenotyping projects in large-scale cohorts has allowed a first look into the factors that shape the inter-individual diversity of the human immune system. Genetic approaches have identified genetic diversity as drivers of 20-40% of the variation between the immune systems of individuals. The remaining 60-80% is shaped by intrinsic factors, with age being the predominant factor, as well as by environmental influences, where cohabitation and chronic viral infections were identified as key mediators. We review and integrate the recent in-depth large-scale studies on human immune diversity and its potential impact on health. VIDEO ABSTRACT.

+view abstract Trends in immunology, PMID: 27692231 2016

Open Access
Eckersley-Maslin MA, Svensson V, Krueger C, Stubbs TM, Giehr P, Krueger F, Miragaia RJ, Kyriakopoulos C, Berrens RV, Milagre I, Walter J, Teichmann SA, Reik W Epigenetics

Mouse embryonic stem cells are dynamic and heterogeneous. For example, rare cells cycle through a state characterized by decondensed chromatin and expression of transcripts, including the Zscan4 cluster and MERVL endogenous retrovirus, which are usually restricted to preimplantation embryos. Here, we further characterize the dynamics and consequences of this transient cell state. Single-cell transcriptomics identified the earliest upregulated transcripts as cells enter the MERVL/Zscan4 state. The MERVL/Zscan4 transcriptional network was also upregulated during induced pluripotent stem cell reprogramming. Genome-wide DNA methylation and chromatin analyses revealed global DNA hypomethylation accompanying increased chromatin accessibility. This transient DNA demethylation was driven by a loss of DNA methyltransferase proteins in the cells and occurred genome-wide. While methylation levels were restored once cells exit this state, genomic imprints remained hypomethylated, demonstrating a potential global and enduring influence of endogenous retroviral activation on the epigenome.

+view abstract Cell reports, PMID: 27681430 2016

Open Access
Stewart KR, Veselovska L, Kelsey G Epigenetics

Epigenetic modifications established during gametogenesis regulate transcription and other nuclear processes in gametes, but also have influences in the zygote, embryo and postnatal life. This is best understood for DNA methylation which, established at discrete regions of the oocyte and sperm genomes, governs genomic imprinting. In this review, we describe how imprinting has informed our understanding of de novo DNA methylation mechanisms, highlight how recent genome-wide profiling studies have provided unprecedented insights into establishment of the sperm and oocyte methylomes and consider the fate and function of gametic methylation and other epigenetic modifications after fertilization.

+view abstract Epigenomics, PMID: 27659720 2016

Open Access
Vermeren MM, Zhang Q, Smethurst E, Segonds-Pichon A, Schrewe H, Wakelam MJ Signalling,Bioinformatics

Phospholipase D2 (PLD2) is an enzyme that produces phosphatidic acid (PA), a lipid messenger molecule involved in a number of cellular events including, through its membrane curvature properties, endocytosis. The PLD2 knock out (PLD2KO) mouse has been previously reported to be protected from insult in a model of Alzheimer's disease. We have further analysed a PLD2KO mouse using mass spectrophotometry of its lipids and found significant differences in PA species throughout its brain. We have examined the expression pattern of PLD2 which allowed us to define which region of the brain to analyse for defect, notably PLD2 was not detected in glial-rich regions. The expression pattern lead us to specifically examine the mitral cells of olfactory bulbs, the Cornus Amonis (CA) regions of the hippocampus and the Purkinje cells of the cerebellum. We find that the change to longer PA species correlates with subtle architectural defect in the cerebellum, exemplified by ectopic Purkinje cells and an adult-onset deficit of olfaction. These observations draw parallels to defects in the reelin heterozygote as well as the effect of high fat diet on olfaction.

+view abstract PloS one, PMID: 27658289 0

Open Access
Okkenhaug K, Graupera M, Vanhaesebroeck B Immunology

The PI3K pathway is hyperactivated in most cancers, yet the capacity of PI3K inhibitors to induce tumor cell death is limited. The efficacy of PI3K inhibition can also derive from interference with the cancer cells' ability to respond to stromal signals, as illustrated by the approved PI3Kδ inhibitor idelalisib in B-cell malignancies. Inhibition of the leukocyte-enriched PI3Kδ or PI3Kγ may unleash antitumor T-cell responses by inhibiting regulatory T cells and immune-suppressive myeloid cells. Moreover, tumor angiogenesis may be targeted by PI3K inhibitors to enhance cancer therapy. Future work should therefore also explore the effects of PI3K inhibitors on the tumor stroma, in addition to their cancer cell-intrinsic impact.

+view abstract Cancer discovery, PMID: 27655435 2016

Ohashi Y, Soler N, García Ortegón M, Zhang L, Kirsten ML, Perisic O, Masson GR, Burke JE, Jakobi AJ, Apostolakis AA, Johnson CM, Ohashi M, Ktistakis NT, Sachse C, Williams RL Signalling

The phosphatidylinositol 3-kinase Vps34 is part of several protein complexes. The structural organization of heterotetrameric complexes is starting to emerge, but little is known about organization of additional accessory subunits that interact with these assemblies. Combining hydrogen-deuterium exchange mass spectrometry (HDX-MS), X-ray crystallography and electron microscopy (EM), we have characterized Atg38 and its human ortholog NRBF2, accessory components of complex I consisting of Vps15-Vps34-Vps30/Atg6-Atg14 (yeast) and PIK3R4/VPS15-PIK3C3/VPS34-BECN1/Beclin 1-ATG14 (human). HDX-MS shows that Atg38 binds the Vps30-Atg14 subcomplex of complex I, using mainly its N-terminal MIT domain and bridges the coiled-coil I regions of Atg14 and Vps30 in the base of complex I. The Atg38 C-terminal domain is important for localization to the phagophore assembly site (PAS) and homodimerization. Our 2.2 Å resolution crystal structure of the Atg38 C-terminal homodimerization domain shows 2 segments of α-helices assembling into a mushroom-like asymmetric homodimer with a 4-helix cap and a parallel coiled-coil stalk. One Atg38 homodimer engages a single complex I. This is in sharp contrast to human NRBF2, which also forms a homodimer, but this homodimer can bridge 2 complex I assemblies.

+view abstract Autophagy, PMID: 27630019 2016

Eil R, Vodnala SK, Clever D, Klebanoff CA, Sukumar M, Pan JH, Palmer DC, Gros A, Yamamoto TN, Patel SJ, Guittard GC, Yu Z, Carbonaro V, Okkenhaug K, Schrump DS, Linehan WM, Roychoudhuri R, Restifo NP Immunology

Tumours progress despite being infiltrated by tumour-specific effector T cells. Tumours contain areas of cellular necrosis, which are associated with poor survival in a variety of cancers. Here, we show that necrosis releases intracellular potassium ions into the extracellular fluid of mouse and human tumours, causing profound suppression of T cell effector function. Elevation of the extracellular potassium concentration ([K(+)]e) impairs T cell receptor (TCR)-driven Akt-mTOR phosphorylation and effector programmes. Potassium-mediated suppression of Akt-mTOR signalling and T cell function is dependent upon the activity of the serine/threonine phosphatase PP2A. Although the suppressive effect mediated by elevated [K(+)]e is independent of changes in plasma membrane potential (Vm), it requires an increase in intracellular potassium ([K(+)]i). Accordingly, augmenting potassium efflux in tumour-specific T cells by overexpressing the potassium channel Kv1.3 lowers [K(+)]i and improves effector functions in vitro and in vivo and enhances tumour clearance and survival in melanoma-bearing mice. These results uncover an ionic checkpoint that blocks T cell function in tumours and identify potential new strategies for cancer immunotherapy.

+view abstract Nature, PMID: 27626381 2016

Krishna S, Palm W, Lee Y, Yang W, Bandyopadhyay U, Xu H, Florey O, Thompson CB, Overholtzer M Signalling

The scavenging of extracellular macromolecules by engulfment can sustain cell growth in a nutrient-depleted environment. Engulfed macromolecules are contained within vacuoles that are targeted for lysosome fusion to initiate degradation and nutrient export. We have shown that vacuoles containing engulfed material undergo mTORC1-dependent fission that redistributes degraded cargo back into the endosomal network. Here we identify the lipid kinase PIKfyve as a regulator of an alternative pathway that distributes engulfed contents in support of intracellular macromolecular synthesis during macropinocytosis, entosis, and phagocytosis. We find that PIKfyve regulates vacuole size in part through its downstream effector, the cationic transporter TRPML1. Furthermore, PIKfyve promotes recovery of nutrients from vacuoles, suggesting a potential link between PIKfyve activity and lysosomal nutrient export. During nutrient depletion, PIKfyve activity protects Ras-mutant cells from starvation-induced cell death and supports their proliferation. These data identify PIKfyve as a critical regulator of vacuole maturation and nutrient recovery during engulfment.

+view abstract Developmental cell, PMID: 27623384 2016

Open Access
Lucas CL, Chandra A, Nejentsev S, Condliffe AM, Okkenhaug K Immunology

Primary immunodeficiencies are inherited disorders of the immune system, often caused by the mutation of genes required for lymphocyte development and activation. Recently, several studies have identified gain-of-function mutations in the phosphoinositide 3-kinase (PI3K) genes PIK3CD (which encodes p110δ) and PIK3R1 (which encodes p85α) that cause a combined immunodeficiency syndrome, referred to as activated PI3Kδ syndrome (APDS; also known as p110δ-activating mutation causing senescent T cells, lymphadenopathy and immunodeficiency (PASLI)). Paradoxically, both loss-of-function and gain-of-function mutations that affect these genes lead to immunosuppression, albeit via different mechanisms. Here, we review the roles of PI3Kδ in adaptive immunity, describe the clinical manifestations and mechanisms of disease in APDS and highlight new insights into PI3Kδ gleaned from these patients, as well as implications of these findings for clinical therapy.

+view abstract Nature reviews. Immunology, PMID: 27616589 2016

Open Access
Dumontier M, Gray AJ, Marshall MS, Alexiev V, Ansell P, Bader G, Baran J, Bolleman JT, Callahan A, Cruz-Toledo J, Gaudet P, Gombocz EA, Gonzalez-Beltran AN, Groth P, Haendel M, Ito M, Jupp S, Juty N, Katayama T, Kobayashi N, Krishnaswami K, Laibe C, Le Novère N, Lin S, Malone J, Miller M, Mungall CJ, Rietveld L, Wimalaratne SM, Yamaguchi A Signalling

Access to consistent, high-quality metadata is critical to finding, understanding, and reusing scientific data. However, while there are many relevant vocabularies for the annotation of a dataset, none sufficiently captures all the necessary metadata. This prevents uniform indexing and querying of dataset repositories. Towards providing a practical guide for producing a high quality description of biomedical datasets, the W3C Semantic Web for Health Care and the Life Sciences Interest Group (HCLSIG) identified Resource Description Framework (RDF) vocabularies that could be used to specify common metadata elements and their value sets. The resulting guideline covers elements of description, identification, attribution, versioning, provenance, and content summarization. This guideline reuses existing vocabularies, and is intended to meet key functional requirements including indexing, discovery, exchange, query, and retrieval of datasets, thereby enabling the publication of FAIR data. The resulting metadata profile is generic and could be used by other domains with an interest in providing machine readable descriptions of versioned datasets.

+view abstract PeerJ, PMID: 27602295 2016

Open Access
Bulley SJ, Droubi A, Clarke JH, Anderson KE, Stephens LR, Hawkins PT, Irvine RF Signalling

Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are enigmatic lipid kinases with physiological functions that are incompletely understood, not the least because genetic deletion and cell transfection have led to contradictory data. Here, we used the genetic tractability of DT40 cells to create cell lines in which endogenous PI5P4Kα was removed, either stably by genetic deletion or transiently (within 1 h) by tagging the endogenous protein genomically with the auxin degron. In both cases, removal impacted Akt phosphorylation, and by leaving one PI5P4Kα allele present but mutating it to be kinase-dead or have PI4P 5-kinase activity, we show that all of the effects on Akt phosphorylation were dependent on the ability of PI5P4Kα to synthesize phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] rather than to remove PI5P. Although stable removal of PI5P4Kα resulted in a pronounced decrease in Akt phosphorylation at Thr308 and Ser473, in part because of reduced plasma membrane PIP3, its acute removal led to an increase in Akt phosphorylation only at Ser473. This process invokes activation primarily of mammalian target of rapamycin complex 2 (mTORC2), which was confirmed by increased phosphorylation of other mTORC2 substrates. These findings establish PI5P4Kα as a kinase that synthesizes a physiologically relevant pool of PI(4,5)P2 and as a regulator of mTORC2, and show a phenomenon similar to the "butterfly effect" described for phosphatidylinositol 3-kinase Iα [Hart JR, et al. (2015) Proc Natl Acad Sci USA 112(4):1131-1136], whereby through apparently the same underlying mechanism, the removal of a protein's activity from a cell can have widely divergent effects depending on the time course of that removal.

+view abstract Proceedings of the National Academy of Sciences of the United States of America, PMID: 27601656 2016

Open Access
Ross SH, Rollings C, Anderson KE, Hawkins PT, Stephens LR, Cantrell DA Signalling

Interleukin-2 (IL-2) is a fundamental cytokine that controls proliferation and differentiation of T cells. Here, we used high-resolution mass spectrometry to generate a comprehensive and detailed map of IL-2 protein phosphorylations in cytotoxic T cells (CTL). The data revealed that Janus kinases (JAKs) couple IL-2 receptors to the coordinated phosphorylation of transcription factors, regulators of chromatin, mRNA translation, GTPases, vesicle trafficking, and the actin and microtubule cytoskeleton. We identified an IL-2-JAK-independent SRC family Tyr-kinase-controlled signaling network that regulates ∼10% of the CTL phosphoproteome, the production of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), and the activity of the serine/threonine kinase AKT. These data reveal a signaling framework wherein IL-2-JAK-controlled pathways coordinate with IL-2-independent networks of kinase activity and provide a resource toward the further understanding of the networks of protein phosphorylation that program CTL fate.

+view abstract Immunity, PMID: 27566939 2016

Open Access
Vogel KU, Bell LS, Galloway A, Ahlfors H, Turner M Immunology

The RNA-binding proteins Zfp36l1 and Zfp36l2 act redundantly to enforce the β-selection checkpoint during thymopoiesis, yet their molecular targets remain largely unknown. In this study, we identify these targets on a genome-wide scale in primary mouse thymocytes and show that Zfp36l1/l2 regulate DNA damage response and cell cycle transcripts to ensure proper β-selection. Double-negative 3 thymocytes lacking Zfp36l1/l2 share a gene expression profile with postselected double-negative 3b cells despite the absence of intracellular TCRβ and reduced IL-7 signaling. Our findings show that in addition to controlling the timing of proliferation at β-selection, posttranscriptional control by Zfp36l1/l2 limits DNA damage responses, which are known to promote thymocyte differentiation. Zfp36l1/l2 therefore act as posttranscriptional safeguards against chromosomal instability and replication stress by integrating pre-TCR and IL-7 signaling with DNA damage and cell cycle control.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 27566829 2016

Clever D, Roychoudhuri R, Constantinides MG, Askenase MH, Sukumar M, Klebanoff CA, Eil RL, Hickman HD, Yu Z, Pan JH, Palmer DC, Phan AT, Goulding J, Gattinoni L, Goldrath AW, Belkaid Y, Restifo NP Immunology

Cancer cells must evade immune responses at distant sites to establish metastases. The lung is a frequent site for metastasis. We hypothesized that lung-specific immunoregulatory mechanisms create an immunologically permissive environment for tumor colonization. We found that T-cell-intrinsic expression of the oxygen-sensing prolyl-hydroxylase (PHD) proteins is required to maintain local tolerance against innocuous antigens in the lung but powerfully licenses colonization by circulating tumor cells. PHD proteins limit pulmonary type helper (Th)-1 responses, promote CD4(+)-regulatory T (Treg) cell induction, and restrain CD8(+) T cell effector function. Tumor colonization is accompanied by PHD-protein-dependent induction of pulmonary Treg cells and suppression of IFN-γ-dependent tumor clearance. T-cell-intrinsic deletion or pharmacological inhibition of PHD proteins limits tumor colonization of the lung and improves the efficacy of adoptive cell transfer immunotherapy. Collectively, PHD proteins function in T cells to coordinate distinct immunoregulatory programs within the lung that are permissive to cancer metastasis. PAPERCLIP.

+view abstract Cell, PMID: 27565342 2016

Open Access
Jethwa SA, Leah EJ, Zhang Q, Bright NA, Oxley D, Bootman MD, Rudge SA, Wakelam MJ Signalling,Lipidomics

Autotaxin (ATX) the lysophospholipase responsible for generating the lipid receptor agonist lysophosphatidic acid (LPA) is a secreted enzyme. Here we show that once secreted it can bind to the surface of cell secreted exosomes. Exosome-bound ATX is catalytically active and carries generated LPA. Once bound to a cell, through specific integrin interaction, ATX releases the LPA to activate cell surface G-protein coupled LPA receptors; inhibition of signaling by the receptor antagonist Ki1642 suggests these are either LPAR1 or LPAR3. The binding stimulates downstream signaling including AKT and MAPK phosphorylation, the release of intracellular stored calcium and cell migration. We propose that exosomal binding of LPA-loaded ATX provides a means of efficiently delivering the lipid agonist to cell surface receptors to promote signalling. We further propose that this is a means whereby autotaxin-LPA signaling operates physiologically.

+view abstract Journal of cell science, PMID: 27557622 2016

Open Access
Coulter TI, Chandra A, Bacon CM, Babar J, Curtis J, Screaton N, Goodlad JR, Farmer G, Steele CL, Leahy TR, Doffinger R, Baxendale H, Bernatoniene J, Edgar JD, Longhurst HJ, Ehl S, Speckmann C, Grimbacher B, Sediva A, Milota T, Faust SN, Williams AP, Hayman G, Kucuk ZY, Hague R, French P, Brooker R, Forsyth P, Herriot R, Cancrini C, Palma P, Ariganello P, Conlon N, Feighery C, Gavin PJ, Jones A, Imai K, Ibrahim MA, Markelj G, Abinun M, Rieux-Laucat F, Latour S, Pellier I, Fischer A, Touzot F, Casanova JL, Durandy A, Burns SO, Savic S, Kumararatne DS, Moshous D, Kracker S, Vanhaesebroeck B, Okkenhaug K, Picard C, Nejentsev S, Condliffe AM, Cant AJ Immunology

Activated phosphoinositide 3-kinase δ syndrome (APDS) is a recently described combined immunodeficiency resulting from gain-of-function mutations in PIK3CD, the gene encoding the catalytic subunit of phosphoinositide 3-kinase δ (PI3Kδ).

+view abstract The Journal of allergy and clinical immunology, PMID: 27555459 2016

Nasrallah R, Fast EM, Solaimani P, Knezevic K, Eliades A, Patel R, Thambyrajah R, Unnikrishnan A, Thoms J, Beck D, Vink CS, Smith A, Wong J, Shepherd M, Kent D, Roychoudhuri R, Paul F, Klippert J, Hammes A, Willnow T, Göttgens B, Dzierzak E, Zon LI, Lacaud G, Kouskoff V, Pimanda JE Immunology

Enhancers are the primary determinants of cell identity and specific promoter/enhancer combinations of Endoglin (ENG) have been shown to target blood and endothelium in the embryo. Here, we generated a series of embryonic stem cell lines, each targeted with reporter constructs driven by specific promoter/enhancer combinations of ENG, to evaluate their discriminative potential and value as molecular probes of the corresponding transcriptome. The Eng promoter (P) in combination with the -8/+7/+9kb enhancers, targeted cells in FLK1 mesoderm that were enriched for blast colony forming potential, whereas the P/-8kb enhancer targeted TIE2+/c-KIT+/CD41- endothelial cells that were enriched for hematopoietic potential. These fractions were isolated using reporter expression and their transcriptomes profiled by RNA-seq. There was high concordance between our signatures and those from embryos with defects at corresponding stages of hematopoiesis. Of the six genes that were up-regulated in both hemogenic mesoderm and hemogenic endothelial fractions targeted by the reporters, LRP2, a multiligand receptor, was the only gene that had not previously been associated with hematopoiesis. We show that LRP2 is indeed involved in definitive hematopoiesis and by doing so validate the use of reporter gene coupled enhancers as probes to gain insights into transcriptional changes that facilitate cell fate transitions.

+view abstract Blood, PMID: 27554085 2016

Open Access
Houslay DM, Anderson KE, Chessa T, Kulkarni S, Fritsch R, Downward J, Backer JM, Stephens LR, Hawkins PT Signalling

Class I phosphoinositide 3-kinases (PI3Ks) catalyze production of the lipid messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3), which plays a central role in a complex signaling network regulating cell growth, survival, and movement. This network is overactivated in cancer and inflammation, and there is interest in determining the PI3K catalytic subunit (p110α, p110β, p110γ, or p110δ) that should be targeted in different therapeutic contexts. Previous studies have defined unique regulatory inputs for p110β, including direct interaction with Gβγ subunits, Rac, and Rab5. We generated mice with knock-in mutations of p110β that selectively blocked the interaction with Gβγ and investigated its contribution to the PI3K isoform dependency of receptor tyrosine kinase (RTK) and G protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptor (GPCR) responses in primary macrophages and neutrophils. We discovered a unique role for p110β in supporting synergistic PIP3 formation in response to the coactivation of macrophages by macrophage colony-stimulating factor (M-CSF) and the complement protein C5a. In contrast, we found partially redundant roles for p110α, p110β, and p110δ downstream of M-CSF alone and a nonredundant role for p110γ downstream of C5a alone. This role for p110β completely depended on direct interaction with Gβγ, suggesting that p110β transduces GPCR signals in the context of coincident activation by an RTK. The p110β-Gβγ interaction was also required for neutrophils to generate reactive oxygen species in response to the Fcγ receptor-dependent recognition of immune complexes and for their β2 integrin-mediated adhesion to fibrinogen or poly-RGD+, directly implicating heterotrimeric G proteins in these two responses.

+view abstract Science signaling, PMID: 27531651 2016

Frans G, Moens L, Schaballie H, Wuyts G, Liston A, Poesen K, Janssens A, Rice GI, Crow YJ, Meyts I, Bossuyt X Immunology

+view abstract The Journal of allergy and clinical immunology, PMID: 27531075 2017