小猪视频

 

Filter

Publications

The 小猪视频 Publications database contains details of all publications resulting from our research groups and  Pre-prints by Institute authors can be viewed on the Institute's . We believe that free and open access to the outputs of publicly鈥恌unded research offers significant social and economic benefits, as well as aiding the development of new research. We are working to provide Open Access to as many publications as possible and these can be identified below by the padlock icon. Where this hasn't been possible, subscriptions may be required to view the full text.
 

Open Access
Langie SA, Cameron KM, Ficz G, Oxley D, Tomaszewski B, Gorniak JP, Maas LM, Godschalk RW, van Schooten FJ, Reik W, von Zglinicki T, Mathers JC Epigenetics,Mass Spectrometry

Base excision repair (BER) may become less effective with ageing resulting in accumulation of DNA lesions, genome instability and altered gene expression that contribute to age-related degenerative diseases. The brain is particularly vulnerable to the accumulation of DNA lesions; hence, proper functioning of DNA repair mechanisms is important for neuronal survival. Although the mechanism of age-related decline in DNA repair capacity is unknown, growing evidence suggests that epigenetic events (e.g., DNA methylation) contribute to the ageing process and may be functionally important through the regulation of the expression of DNA repair genes. We hypothesize that epigenetic mechanisms are involved in mediating the age-related decline in BER in the brain. Brains from male mice were isolated at 3-32 months of age. Pyrosequencing analyses revealed significantly increased Ogg1 methylation with ageing, which correlated inversely with Ogg1 expression. The reduced Ogg1 expression correlated with enhanced expression of methyl-CpG binding protein 2 and ten-eleven translocation enzyme 2. A significant inverse correlation between Neil1 methylation at CpG-site2 and expression was also observed. BER activity was significantly reduced and associated with increased 8-oxo-7,8-dihydro-2'-deoxyguanosine levels. These data indicate that Ogg1 and Neil1 expression can be epigenetically regulated, which may mediate the effects of ageing on DNA repair in the brain.

+view abstract Genes, PMID: 28218666 2017

Open Access
Mauro C, Smith J, Cucchi D, Coe D, Fu H, Bonacina F, Baragetti A, Cermenati G, Caruso D, Mitro N, Catapano AL, Ammirati E, Longhi MP, Okkenhaug K, Norata GD, Marelli-Berg FM Immunology

Low-grade systemic inflammation associated to obesity leads to cardiovascular complications, caused partly by infiltration of adipose and vascular tissue by effector T聽cells. The signals leading to T聽cell differentiation and tissue infiltration during obesity are poorly understood. We tested whether saturated fatty acid-induced metabolic stress affects differentiation and trafficking patterns of CD4(+) T聽cells. Memory CD4(+) T聽cells primed in high-fat diet-fed donors preferentially migrated to non-lymphoid, inflammatory sites, independent of the metabolic status of the hosts. This was due to biased CD4(+) T聽cell differentiation into CD44(hi)-CCR7(lo)-CD62L(lo)-CXCR3(+)-LFA1(+) effector memory-like T聽cells upon priming in high-fat聽diet-fed animals. Similar phenotype was observed in obese subjects in a cohort of free-living people. This developmental bias was independent of any crosstalk聽between CD4(+) T聽cells and dendritic cells and was mediated via direct exposure of CD4(+) T聽cells to palmitate, leading to increased activation of a PI3K p110未-Akt-dependent pathway upon priming.

+view abstract Cell metabolism, PMID: 28190771 2017

Open Access
Schreiber F, Bader GD, Gleeson P, Golebiewski M, Hucka M, Le Nov猫re N, Myers C, Nickerson D, Sommer B, Walthemath D Signalling

Standards are essential to the advancement of science and technology. In systems and synthetic biology, numerous standards and associated tools have been developed over the last 16 years. This special issue of the Journal of Integrative Bioinformatics aims to support the exchange, distribution and archiving of these standards, as well as to provide centralised and easily citable access to them.

+view abstract Journal of integrative bioinformatics, PMID: 28187405 2016

Open Access
Humblet-Baron S, Sch枚nefeldt S, Garcia-Perez JE, Baron F, Pasciuto E, Liston A Immunology

Severe combined immunodeficiency can be caused by loss-of-function mutations in genes involved in the DNA recombination machinery, such as recombination-activating gene 1 (RAG1), RAG2, or DNA cross-link repair 1C (DCLRE1C). Defective DNA recombination causes a developmental block in T and B cells, resulting in high susceptibility to infections. Hypomorphic mutations in the same genes can also give rise to a partial loss of T cells in a spectrum including leaky severe combined immunodeficiency (LS) and Omenn syndrome (OS). These patients not only experience life-threatening infections because of immunodeficiency but also experience inflammatory/autoimmune conditions caused by the presence of autoreactive T cells.

+view abstract The Journal of allergy and clinical immunology, PMID: 28185879 2017

Clark SJ, Smallwood SA, Lee HJ, Krueger F, Reik W, Kelsey G Epigenetics,Bioinformatics

DNA methylation (DNAme) is an important epigenetic mark in diverse species. Our current understanding of DNAme is based on measurements from bulk cell samples, which obscures intercellular differences and prevents analyses of rare cell types. Thus, the ability to measure DNAme in single cells has the potential to make important contributions to the understanding of several key biological processes, such as embryonic development, disease progression and aging. We have recently reported a method for generating genome-wide DNAme maps from single cells, using single-cell bisulfite sequencing (scBS-seq), allowing the quantitative measurement of DNAme at up to 50% of CpG dinucleotides throughout the mouse genome. Here we present a detailed protocol for scBS-seq that includes our most recent developments to optimize recovery of CpGs, mapping efficiency and success rate; reduce hands-on time; and increase sample throughput with the option of using an automated liquid handler. We provide step-by-step instructions for each stage of the method, comprising cell lysis and bisulfite (BS) conversion, preamplification and adaptor tagging, library amplification, sequencing and, lastly, alignment and methylation calling. An individual with relevant molecular biology expertise can complete library preparation within 3 d. Subsequent computational steps require 1-3 d for someone with bioinformatics expertise.

+view abstract Nature protocols, PMID: 28182018 2017

Open Access
Kalkan T, Olova N, Roode M, Mulas C, Lee HJ, Nett I, Marks H, Walker R, Stunnenberg HG, Lilley KS, Nichols J, Reik W, Bertone P, Smith A Epigenetics,Flow Cytometry

Mouse embryonic stem (ES) cells are locked into self-renewal by shielding from inductive cues. Release from this ground state in minimal conditions offers a system for delineating developmental progression from naive pluripotency. Here we examined the initial transition process. The ES cell population behaves asynchronously. We therefore exploited a short-half-life Rex1::GFP reporter to isolate cells either side of exit from naive status. Extinction of ES cell identity in single cells is acute. It occurs only after near-complete elimination of na茂ve pluripotency factors, but precedes appearance of lineage specification markers. Cells newly departed from the ES cell state display features of early post-implantation epiblast and are distinct from primed epiblast. They also exhibit a genome-wide increase in DNA methylation, intermediate between early and late epiblast. These findings are consistent with the proposition that naive cells transition to a distinct formative phase of pluripotency preparatory to lineage priming.

+view abstract Development (Cambridge, England), PMID: 28174249 2017

Liston A, Masters SL

The innate immune system uses a distinct set of germline-encoded pattern recognition receptors (PRRs) to initiate downstream inflammatory cascades. This recognition system is in stark contrast to the adaptive immune system, which relies on highly variable, randomly generated antigen receptors. A key limitation of the innate immune system's reliance on fixed PRRs is its inflexibility in responding to rapidly evolving pathogens. Recent advances in our understanding of inflammasome activation suggest that the innate immune system also has sophisticated mechanisms for responding to pathogens for which there is no fixed PRR. This includes the recognition of debris from dying cells, known as danger-associated molecular patterns (DAMPs), which can directly activate PRRs in a similar manner to pathogen-associated molecular patterns (PAMPs). Distinct from this, emerging data for the inflammasome components NLRP3 (NOD-, LRR- and pyrin domain-containing 3) and pyrin suggest that they do not directly detect molecular patterns, but instead act as signal integrators that are capable of detecting perturbations in cytoplasmic homeostasis, for example, as initiated by infection. Monitoring these perturbations, which we term 'homeostasis-altering molecular processes' (HAMPs), provides potent flexibility in the capacity of the innate immune system to detect evolutionarily novel infections; however, HAMP sensing may also underlie the sterile inflammation that drives chronic inflammatory diseases.

+view abstract Nature reviews. Immunology, PMID: 28163301 2017

Open Access
Milagre I, Stubbs TM, King MR, Spindel J, Santos F, Krueger F, Bachman M, Segonds-Pichon A, Balasubramanian S, Andrews SR, Dean W, Reik W Epigenetics,Bioinformatics

Global DNA demethylation is an integral part of reprogramming processes in聽vivo and in聽vitro, but whether it occurs in the derivation of induced pluripotent stem cells (iPSCs) is not known. Here, we show that iPSC reprogramming involves both global and targeted demethylation, which are separable mechanistically and by their biological outcomes. Cells at intermediate-late stages of reprogramming undergo transient genome-wide demethylation, which is more pronounced in female cells. Global demethylation requires activation-induced cytidine deaminase (AID)-mediated downregulation of UHRF1 protein, and abolishing demethylation leaves thousands of hypermethylated regions in the iPSC genome. Independently of AID and global demethylation, regulatory regions, particularly ESC enhancers and super-enhancers, are specifically targeted for hypomethylation in association with transcription of the pluripotency network. Our results show that global and targeted DNA demethylation are conserved and聽distinct reprogramming processes, presumably because of their respective roles in epigenetic memory erasure and in the establishment of cell identity.

+view abstract Cell reports, PMID: 28147265 2017

Open Access
Jansen IE, Ye H, Heetveld S, Lechler MC, Michels H, Seinstra RI, Lubbe SJ, Drouet V, Lesage S, Majounie E, Gibbs JR, Nalls MA, Ryten M, Botia JA, Vandrovcova J, Simon-Sanchez J, Castillo-Lizardo M, Rizzu P, Blauwendraat C, Chouhan AK, Li Y, Yogi P, Amin N, van Duijn CM, , Morris HR, Brice A, Singleton AB, David DC, Nollen EA, Jain S, Shulman JM, Heutink P Signalling

Whole-exome sequencing (WES) has been successful in identifying genes that cause familial Parkinson's disease (PD). However, until now this approach has not been deployed to study large cohorts of unrelated participants. To discover rare PD susceptibility variants, we performed WES in 1148 unrelated cases and 503 control participants. Candidate genes were subsequently validated for functions relevant to PD based on parallel RNA-interference (RNAi) screens in human cell culture and Drosophila and C. elegans models.

+view abstract Genome biology, PMID: 28137300

Open Access
Canovas S, Ivanova E, Romar R, Garc铆a-Mart铆nez S, Soriano-脷beda C, Garc铆a-V谩zquez FA, Saadeh H, Andrews S, Kelsey G, Coy P Epigenetics,Bioinformatics

The number of children born since the origin of Assisted Reproductive Technologies (ART) exceeds 5 million. The majority seem healthy, but a higher frequency of defects has been reported among ART-conceived infants, suggesting an epigenetic cost. We report the first whole-genome DNA methylation datasets from single pig blastocysts showing differences between in vivo and in vitro produced embryos. Blastocysts were produced in vitro either without (C-IVF) or in the presence of natural reproductive fluids (Natur-IVF). Natur-IVF embryos were of higher quality than C-IVF in terms of cell number and hatching ability to. RNA-Seq and DNA methylation analyses showed that Natur-IVF embryos have expression and methylation patterns closer to in vivo blastocysts. Genes involved in reprogramming, imprinting and development were affected by culture, with fewer aberrations in Natur-IVF embryos. Methylation analysis detected methylated changes in C-IVF, but not in Natur-IVF, at genes whose methylation could be critical, such as IGF2R and NNAT.

+view abstract eLife, PMID: 28134613 2017

Farquhar MJ, Humphreys IS, Rudge SA, Wilson GK, Bhattacharya B, Ciaccia M, Hu K, Zhang Q, Mailly L, Reynolds GM, Aschcroft M, Balfe P, Baumert TF, Roessler S, Wakelam MJ, McKeating JA Signalling,Lipidomics

Chronic hepatitis C is a global health problem with an estimated 170 million HCV infected individuals at risk of progressive liver disease and hepatocellular carcinoma (HCC). Autotaxin (ATX) is a phospholipase with diverse roles in physiological and pathological processes including inflammation and oncogenesis. Clinical studies have reported increased ATX expression in chronic hepatitis C, however, the pathways regulating ATX and its role in the viral life cycle are not well understood.

+view abstract Journal of hepatology, PMID: 28126468 2017

van Nieuwenhuijze A, Dooley J, Humblet-Baron S, Sreenivasan J, Koenders M, Schlenner SM, Linterman M, Liston A Immunology

MicroRNA (miR) are short non-coding RNA sequences of 19-24 nucleotides that regulate gene expression by binding to mRNA target sequences. The miR-29 family of miR (miR-29a, b-1, b-2 and c) is a key player in T-cell differentiation and effector function, with deficiency causing thymic involution and a more inflammatory T-cell profile. However, the relative roles of different miR-29 family members in these processes have not been dissected. We studied the immunological role of the individual members of the miR-29 family using mice deficient for miR-29a/b-1 or miR-29b-2/c in homeostasis and during collagen-induced arthritis. We found a definitive hierarchy of immunological function, with the strong phenotype of miR-29a-deficiency in thymic involution and T-cell activation being reduced or absent in miR-29c-deficient mice. Strikingly, despite elevating the Th1 and Th17 responses, loss of miR-29a conferred near-complete protection from collagen-induced arthritis (CIA), with profound defects in B-cell proliferation and antibody production. Our results identify the hierarchical structure of the miR-29 family in T-cell biology, and identify miR-29a in B cells as a potential therapeutic target in arthritis.

+view abstract Cellular and molecular life sciences : CMLS, PMID: 28124096 2017

Liston A, Todd JA, Lagou V Immunology

Type 1 and type 2 diabetes are distinct clinical entities primarily driven by autoimmunity and metabolic dysfunction, respectively. However, there is a growing appreciation that they may share an etiopathological factor, namely the role of variation in beta-cell sensitivity to stress factors. Increased sensitivity increases the risk of beta-cell death or insulin secretion dysfunction. The beta-cell fragility model proposes that this variation contributes to the risk of developing either type 1 or type 2 diabetes, in the presence of immunological and/or metabolic stress factors. Therapeutics that increase the resistance of beta cells to these factors and decreasing fragility may constitute a new class of anti-diabetogenics, with potential use across both diseases.

+view abstract Trends in molecular medicine, PMID: 28117227 2017

Open Access
Haljasorg U, Dooley J, Laan M, Kisand K, Bichele R, Liston A, Peterson P Immunology

The thymus is a primary lymphoid organ required for the induction and maintenance of central tolerance. The main function of the thymus is to generate an immunocompetent set of T cells not reactive to self. During negative selection in the thymus, thymocytes with autoreactive potential are either deleted or differentiated into regulatory T cells (Tregs). The molecular basis by which the thymus allows high-efficiency Treg induction remains largely unknown. In this study, we report that IFN regulatory factor 4 (Irf4) is highly expressed in murine thymic epithelium and is required to prime thymic epithelial cells (TEC) for effective Treg induction. TEC-specific Irf4 deficiency resulted in a significantly reduced thymic Treg compartment and increased susceptibility to mononuclear infiltrations in the salivary gland. We propose that Irf4 is imperative for thymic Treg homeostasis because it regulates TEC-specific expression of several chemokines and costimulatory molecules indicated in thymocyte development and Treg induction.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 28108558 2017

Turner M, Monz贸n-Casanova E Immunology

+view abstract Nature immunology, PMID: 28102216 2017

Goverse G, Molenaar R, Macia L, Tan J, Erkelens MN, Konijn T, Knippenberg M, Cook EC, Hanekamp D, Veldhoen M, Hartog A, Roeselers G, Mackay CR, Mebius RE Immunology

The gastrointestinal tract is continuously exposed to many environmental factors that influence intestinal epithelial cells and the underlying mucosal immune system. In this article, we demonstrate that dietary fiber and short chain fatty acids (SCFAs) induced the expression of the vitamin A-converting enzyme RALDH1 in intestinal epithelial cells in vivo and in vitro, respectively. Furthermore, our data showed that the expression levels of RALDH1 in small intestinal epithelial cells correlated with the activity of vitamin A-converting enzymes in mesenteric lymph node dendritic cells, along with increased numbers of intestinal regulatory T cells and a higher production of luminal IgA. Moreover, we show that the consumption of dietary fiber can alter the composition of SCFA-producing microbiota and SCFA production in the small intestines. In conclusion, our data illustrate that dietary adjustments affect small intestinal epithelial cells and can be used to modulate the mucosal immune system.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 28100682 2017

Moens L, Van Eyck L, Jochmans D, Mitera T, Frans G, Bossuyt X, Matthys P, Neyts J, Ciancanelli M, Zhang SY, Gijsbers R, Casanova JL, Boisson-Dupuis S, Meyts I, Liston A Immunology

+view abstract The Journal of allergy and clinical immunology, PMID: 28087227 2017

Hassan-Zadeh V, Rugg-Gunn P, Bazett-Jones DP Epigenetics

Epiblast stem cells (EpiSCs), which are pluripotent cells isolated from early post-implantation mouse embryos (E5.5), show both similarities and differences compared to mouse embryonic stem cells (mESCs), isolated earlier from the inner cell mass (ICM) of the E3.5 embryo. Previously, we have observed that while chromatin is very dispersed in E3.5 ICM, compact chromatin domains and chromocentres appear in E5.5 epiblasts after embryo implantation. Given that the observed chromatin re-organization in E5.5 epiblasts coincides with an increase in DNA methylation, in this study, we aimed to examine the role of DNA methylation in chromatin re-organization during the in vitro conversion of ESCs to EpiSCs. The requirement for DNA methylation was determined by converting both wild-type and DNA methylation-deficient ESCs to EpiSCs, followed by structural analysis with electron spectroscopic imaging (ESI). We show that the chromatin re-organization which occurs in vivo can be re-capitulated in vitro during the ESC to EpiSC conversion. Indeed, after 7聽days in EpiSC media, compact chromatin domains begin to appear throughout the nuclear volume, creating a chromatin organization similar to E5 epiblasts and embryo-derived EpiSCs. Our data demonstrate that DNA methylation is dispensable for this global chromatin re-organization but required for the compaction of pericentromeric chromatin into chromocentres.

+view abstract Chromosoma, PMID: 28084535 2017

Open Access
Lechler MC, Crawford ED, Groh N, Widmaier K, Jung R, Kirstein J, Trinidad JC, Burlingame AL, David DC Signalling

Low-complexity "prion-like" domains in key RNA-binding proteins (RBPs) mediate the reversible assembly of RNA granules. Individual RBPs harboring these domains have been linked to specific neurodegenerative diseases. Although their aggregation in neurodegeneration has been extensively characterized, it remains unknown how the process of aging disturbs RBP dynamics. We show that a wide variety of RNA granule components, including stress granule proteins, become highly insoluble with age in C.聽elegans and that reduced insulin/insulin-like growth factor 1 (IGF-1) daf-2 receptor signaling efficiently prevents their aggregation. Importantly, stress-granule-related RBP aggregates are associated with reduced fitness. We show that heat shock transcription factor 1 (HSF-1) is a main regulator of stress-granule-related RBP aggregation in both young and aged animals. During aging, increasing DAF-16 activity restores dynamic stress-granule-related RBPs, partly by decreasing the buildup of other misfolded proteins that seed RBP aggregation. Longevity-associated mechanisms found to maintain dynamic RBPs during aging could be relevant for neurodegenerative diseases.

+view abstract Cell reports, PMID: 28076789

Rugg-Gunn P Epigenetics

This protocol describes the derivation and culture of epiblast stem cells (EpiSCs) from early postimplantation epiblasts. EpiSCs can be maintained in an undifferentiated state and retain the ability to generate tissues from all three germ layers in vitro and to form teratomas in vivo. However, they seem unable to form chimeras. Whether this is due to differences in developmental status or a cellular incompatibility (e.g., cell adhesion) between EpiSCs and the host inner cell mass (ICM) is currently unclear. Other differences between mouse embryonic stem (ES) cells and EpiSCs also exist, including gene expression profiles and different growth factor requirements for self-renewal. Thus, EpiSCs provide an important in vitro model for studying the establishment and maintenance of pluripotency in postimplantation epiblast tissues.

+view abstract Cold Spring Harbor protocols, PMID: 28049783 2017

Rugg-Gunn P Epigenetics

Whereas embryonic stem (ES) cells are isolated from the embryonic lineage of the blastocyst, other stable stem cell lines can be derived from the extraembryonic tissues of the early mouse embryo. Trophoblast stem (TS) cells are derived from trophectoderm and early postimplantation trophoblast, and extraembryonic endoderm stem (XEN) cells are derived from primitive endoderm. The derivation of XEN cell lines from 3.5-dpc mouse blastocysts, described here, is similar to the derivation of TS cell lines. TS and XEN cells can self-renew in vitro and differentiate in vitro and in chimeras (in vivo) in a lineage-appropriate manner, showing the developmental potential of their origin, thus providing important models to study the mouse extraembryonic lineages.

+view abstract Cold Spring Harbor protocols, PMID: 28049782 2017

Cerny O, Anderson KE, Stephens LR, Hawkins PT, Sebo P Signalling

The adenylate cyclase toxin-hemolysin (CyaA) plays a key role in immune evasion and virulence of the whooping cough agent Bordetella pertussis. CyaA penetrates the complement receptor 3-expressing phagocytes and ablates their bactericidal capacities by catalyzing unregulated conversion of cytosolic ATP to the key second messenger molecule cAMP. We show that signaling of CyaA-generated cAMP blocks the oxidative burst capacity of neutrophils by two converging mechanisms. One involves cAMP/protein kinase A-mediated activation of the Src homology region 2 domain-containing phosphatase-1 (SHP-1) and limits the activation of MAPK ERK and p38 that are required for assembly of the NADPH oxidase complex. In parallel, activation of the exchange protein directly activated by cAMP (Epac) provokes inhibition of the phospholipase C by an as yet unknown mechanism. Indeed, selective activation of Epac by the cell-permeable analog 8-(4-chlorophenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate counteracted the direct activation of phospholipase C by 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide. Hence, by inhibiting production of the protein kinase C-activating lipid, diacylglycerol, cAMP/Epac signaling blocks the bottleneck step of the converging pathways of oxidative burst triggering. Manipulation of neutrophil membrane composition by CyaA-produced signaling of cAMP thus enables B. pertussis to evade the key innate host defense mechanism of reactive oxygen species-mediated killing of bacteria by neutrophils.

+view abstract Journal of immunology (Baltimore, Md. : 1950), PMID: 28039302 2017

Open Access
Vallot C, Patrat C, Collier AJ, Huret C, Casanova M, Liyakat Ali TM, Tosolini M, Frydman N, Heard E, Rugg-Gunn PJ, Rougeulle C Epigenetics

Sex chromosome dosage compensation is essential in most metazoans, but the developmental timing and underlying mechanisms vary significantly, even among placental mammals. Here we identify human-specific mechanisms regulating X chromosome activity in early embryonic development. Single-cell RNA sequencing and imaging revealed co-activation and accumulation of the long noncoding RNAs (lncRNAs) XACT and XIST on active X chromosomes in both early human pre-implantation embryos and naive human embryonic stem cells. In these contexts, the XIST RNA adopts an unusual, highly dispersed organization, which may explain why it does not trigger X chromosome inactivation at this stage. Functional studies in transgenic mouse cells show that XACT influences XIST accumulation in cis. Our findings therefore suggest a mechanism involving antagonistic activity of XIST and XACT in controlling X chromosome activity in early human embryos, and they highlight the contribution of rapidly evolving lncRNAs to species-specific developmental mechanisms.

+view abstract Cell stem cell, PMID: 27989768 2016

Open Access
Selleri L, Bartolomei MS, Bickmore WA, He L, Stubbs L, Reik W, Barsh GS Epigenetics

+view abstract PLoS genetics, PMID: 27977680 2016